

Funktions- und Schnittstellenbeschreibung

Inhaltsverzeichnis

1	Zu di	esem Do	kument		5
	1.1	Zweck ι	und Gültigke	it des Handbuchs	5
	1.2	Mitgelte	nde Dokume	ente	5
	1.3	_		n dieser Anleitung	
	1.4		•	eser Anleitung	
2	Allge	meine F	unktionswe	ise	7
3	Funk	tionsprii	nzip		8
4	Block	kschaltb	ild		9
5	Schn	ittsteller	1		10
	5.1	CANope	en		10
		5.1.1	Unterstützt	e Profile	11
		5.1.2	Unterstützt	e CANopen Dienste	11
		5.1.3	SDO Servi	ce	12
			5.1.3.1	Store parameters	14
			5.1.3.2	Restore default parameters	15
		5.1.4	PDO Servi	ce	15
			5.1.4.1	Kommunikationsarten	15
			5.1.4.2	COB-ID	16
			5.1.4.3	PDO mapping	16
			5.1.4.3.1	TPDO mapping parameter	
			5.1.4.3.2	TPDO communication parameter	17
			5.1.4.3.3	Cycle timer PDO1	
		5.1.5	Netzwerkm	nanagement (NMT)	
			5.1.5.1	NMT Reset Communication	
			5.1.5.2	NMT Reset Node	20
		5.1.6	Heartbeat.		
			5.1.6.1	Producer heartbeat time	22
		5.1.7		_ife Guarding	
				Guard time	
			5.1.7.2	Life time factor	
		5.1.8	Laver Setti	ng Service (LSS)	
			5.1.8.1	Unterstützte Funktionen	
			5.1.8.2	Nachrichtenstruktur	
		5.1.9	Baudrate		
		5.1.10			
		5.1.11		B-ID Konfiguration	
		5.1.12		on	
		••••	5.1.12.1	Baumer Device Information	
			5.1.12.2	Device Name	
			5.1.12.3	Device Type	
			5.1.12.4	Identity object	
			5.1.12.5	Module identification	
			5.1.12.6	Profile & software version	
			5.1.12.7	Serial number	
			5.1.12.7	Software version	
			5.1.12.0	Column Volodii	02

		5.1.13	Diagnosefu	ınktionen	33
			5.1.13.1	Operating Status	33
			5.1.13.2	Operation Time	33
			5.1.13.3	Operation Cycle Counter	34
			5.1.13.4	External Supply Voltage	34
			5.1.13.5	Battery Voltage	
			5.1.13.6	Temperatur	
			5.1.13.7	CW / CCW Information	35
	5.2	CANon	en safetv		35
	0.2	5.2.1	•	nmunikation	
		0.2.1	5.2.1.1	SRDO-CAN-Message Struktur	
		5.2.2		ktionen	
		0.2.2	5.2.2.1	Konfigurieren der sicheren Kommunikationsparameter	
			5.2.2.2	CRC-Generierung	
			5.2.2.3	Configuration valid	
			5.2.2.4	Safety position configuration parameters	
			5.2.2.5	Safety speed configuration parameters	
			5.2.2.6	Safety position value / Safety inverted position value	
			5.2.2.7	Safety speed value / Safety speed inverted value	
			5.2.2.8	Safety application configuration valid	
			5.2.2.9	Safety acceleration parameter	
			5.2.2.10	Safety acceleration configuration signature	
			5.2.2.11	Safety configuration signature	
			5.2.2.12	Safety acceleration value	
			5.2.2.13	SRDOx	
			5.2.2.13.1	SRD01 Kommunikationsparameter	
			5.2.2.13.2	SRDO1 Mapping-Parameter	
			5.2.2.13.3	SRDO2 Kommunikationsparameter	
			5.2.2.13.4	SRDO2 Mapping-Parameter	
			5.2.2.13.5	SRD03 Kommunikationsparameter	
			5.2.2.13.6	SRDO3 Mapping-Parameter	
	E 2			5	
	5.3	_	•		
		5.3.1		· COR ID	
		5.3.2		/ COB-ID	
		5.3.3	•	ster	
		5.3.4		viour	
		5.3.5	,	ion	
		5.3.6		alarma	
		5.3.7		alarms	
		5.3.8 5.3.9	_	werninge	
		5.5.9	Supported	warnings	52
6	Betri	ebsfunk	tionen		53
	6.1	Position	n encoder val	lue	53
	6.2	Speed '	Value		54
	6.3				
	6.4				
	6.5	Acceler	ation parame	eter	56
	6.6	Gear Fa	actor		56

	6.7	Number of distinguishable revolutions	59
	6.8	Used single turn resolution.	59
	6.9	Operating parameter	60
	6.10	Total measuring range	60
	6.11	Measuring units per revolution	60
	6.12	Offset encoder	62
	6.13	Preset value encoder	62
7	Anha	ng	63
	7.1	CANopen Objektverzeichnis	
		7.1.1 Kommunikations-Profil	63
		7.1.2 Herstellerspezifische Objekte	70
		7.1.3 Standardisiertes Geräteprofil	74

1 Zu diesem Dokument

1.1 Zweck und Gültigkeit des Handbuchs

Dieses Handbuch beschreibt die Funktionen und einstellbaren Parameter/Kommandos der Industrie-Drehgeber von *Baumer*.

Das Handbuch ist gültig für folgende Produktfamilien:

- EAM580RS MT
- EAM580RS ST

1.2 Mitgeltende Dokumente

- Als Download unter www.baumer.com:
 - Datenblatt
 - Sicherheitshandbuch
 - EU-Konformitätserklärung
- Als Produktbeileger:
 - Originalbetriebs- und Montageanleitung
 - Beileger Allgemeine Hinweise (11042373)

1.3 Kennzeichnungen in dieser Anleitung

Auszeichnung	Verwendung	Beispiel
Dialogelement	Kennzeichnet Dialogelemente.	Klicken Sie auf die Schaltfläche OK .
Eigenname	Kennzeichnet Namen von Produkten, Dateien, etc.	Internet Explorer wird in keiner Version unterstützt.
Code	Kennzeichnet Eingaben.	Geben Sie folgende IP-Adresse ein: 192.168.0.250

1 | Zu diesem Dokument Baumer

1.4 Warnhinweise in dieser Anleitung

Warnhinweise machen auf mögliche Verletzungen oder Sachschäden aufmerksam. Die Warnhinweise in dieser Anleitung sind mit unterschiedlichen Gefahrenstufen gekennzeichnet:

Symbol	Warnwort	Erklärung
	GEFAHR	Kennzeichnet eine unmittelbare Gefährdung mit hohem Risiko, die Tod oder schwere Körperverletzung zur Folge haben wird, wenn sie nicht vermieden wird.
	WARNUNG	Kennzeichnet eine mögliche Gefährdung mit mittlerem Risiko, die Tod oder (schwere) Körperverletzung zur Folge haben kann, wenn sie nicht vermieden wird.
	VORSICHT	Kennzeichnet eine Gefährdung mit geringem Risiko, die leichte oder mittlere Körperverletzung zur Folge haben könnte, wenn sie nicht vermieden wird.
	HINWEIS	Kennzeichnet eine Warnung vor Sachschäden.
-`\	INFO	Kennzeichnet praxisbezogene Informationen und Tipps, die einen optimalen Einsatz der Geräte ermöglichen.

2 Allgemeine Funktionsweise

Absoluter Drehgeber mit 58 mm Durchmesser. Die sicherheitsgerichteten Positions-, Geschwindigkeits- und Beschleunigungswerte werden über die CANopen Safety Schnittstelle/Protokoll (EN 50325-5) übertragen. Weiterhin werden die CANopen Daten über die Standard CANopen Schnittstelle als nicht-sicherheitsgerichtete Daten übertragen. Der Drehgeber ist entsprechend den CiA Standards entwickelt:

- CiA DS301 (Kommunikationsprofil)
- CiA DSP305 (LSS Profil)
- CiA DS406 (Geräteprofil Drehgeber)

Ein Überschreiten der Lebensdauer der integrierten Kugellager muss vermieden werden, da es durch Verschleiss und Ermüdung zu einem Lagerausfall kommen kann. Der Drehgeber darf nur innerhalb der Gebrauchsdauer (siehe Sicherheitshandbuch) betrieben werden.

Nach Erreichen der Gebrauchsdauer muss der Drehgeber ersetzt werden. Die Gebrauchsdauer kann je nach Applikationseinsatz von der Lebensdauer der integrierten Kugellager begrenzt werden.

3 | Funktionsprinzip Baumer

3 **Funktionsprinzip**

Das Sensorelement liefert Messsignale zur absoluten Bewegung des Magnetrotors. Absolute Drehgeber ordnen jeder Position einen eindeutigen Wert zu. Dazu wird ein Magnet über einen Erfassungschip (Hall-Sensor) gedreht und die Änderung des Magnetfeldes gemessen (Hall-Effekt).

Bei Stromausfall bleibt die eindeutige Position der Welle erhalten. Eine Referenzfahrt zur Startposition oder Grundstellung nach Wiederherstellung der Stromzufuhr ist nicht erforderlich.

Blockschaltbild | 4

4 Blockschaltbild

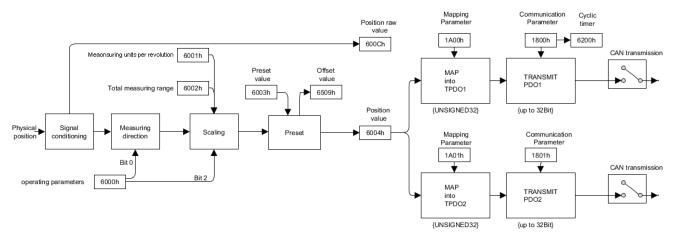


Abb. 1: Übersicht Funktionsprinzip

5 Schnittstellen

5.1 CANopen

CANopen ist eine verbreitete *CAN*-Anwendungsschicht, optimiert für den schnellen Datenaustausch in Echtzeitsystemen. Die Organisation CAN in Automation (CiA) ist zuständig für die geltenden Normen der entsprechenden Profile.

CANopen besteht aus der Protokolldefinition (Kommunikationsprofil) so wie den Geräteprofilen für die jeweilige Geräteklasse. Zur schnellen Kommunikation der Ein- und Ausgangsdaten dienen die Prozessdatenobjekte (PDO). Die *CANopen* Geräteparameter und Prozessdaten sind in einem Objektverzeichnis strukturiert.

Der Zugriff auf beliebige Daten dieses Objektverzeichnisses erfolgt über die Servicedatenobjekte (SDO). Es gibt weitere Objekte (z. B. Telegrammarten) für Netzwerkmanagement (NMT), Synchronisation, Fehlermeldungen usw.

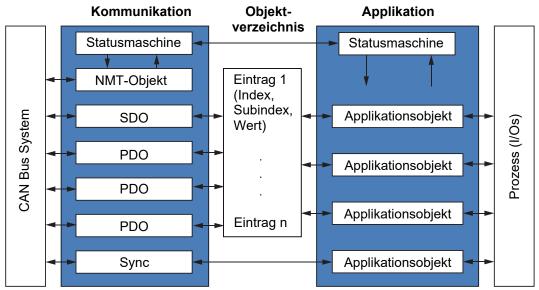


Abb. 2: CANopen-Modell

CANopen ermöglicht:

- Einfachen Zugriff auf alle Geräte- und Kommunikationsparameter
- Synchronisation von mehreren Geräten
- Automatische Konfiguration des Netzwerkes
- zyklischen und ereignisgesteuerten Prozessdatenverkehr

CANopen besteht aus vier Kommunikationsobjekten (COB) mit unterschiedlichen Eigenschaften:

- Prozess-Daten-Objekte für Echtzeitdaten (PDO)
- Service-Daten-Objekte f
 ür Parameter- und Programm
 übertragung (SDO)
- Netzwerk Management (NMT, Heartbeat)
- Vordefinierte Objekte (für Synchronisation, Notfallnachricht)

Alle Geräte- und Kommunikationsparameter sind in einem Objektverzeichnis gegliedert. Ein Objekt umfasst Name des Objekts, Daten-Typ, Anzahl Subindexe, Struktur der Parameter und die Adresse. Nach CiA ist dieses Objektverzeichnis in drei verschiedene Teile unterteilt: Kommunikationsprofil, Geräteprofil und ein herstellerspezifisches Profil.

5.1.1 Unterstützte Profile

Folgende CANopen Profile werden unterstützt:

- CiA 301 / Version 4.2.0 (Kommunikation)
- CiA 305 / Version 3.0.0 (LSS)
- CiA 406 / Version 4.1.0 (Drehgeber Profil)
- EN 50325-5 CANopen Safety protocol (ehemals CiA 304)

5.1.2 Unterstützte CANopen Dienste

Folgende CANopen Dienste werden unterstützt:

- 1 Network Management (gemäss CiA 301)
- 1 SDO Server (gemäss CiA 301)
- 2 TPDOs (gemäss CiA 301/CiA 406)
- 1 Emergency Producer (gemäss CiA 301/CiA 406)
- 1 Heartbeat Producer (gemäss CiA 301)
- 1 Node guarding (gemäss CiA 301)
- 1 LSS Client (gemäss CiA 305)
- 3 SRDOs (gemäss CiA 304/CiA 319/CiA 406)

5.1.3 SDO Service

Der Sensor unterstützt 1 SDO Server (Expedited read/write, segmented read).

Aufbau eines SDO-Telegramms:

COB ID	DLC	Com-	Object L	Object H	Subindex	Data 0	Data 1	Data 2	Data 3
		mand							

Eine SDO-COB ID setzte sich wie folgt zusammen:

Master → Encoder : 600h + Node-ID
 Encoder ← Master : 580h + Node-ID

DLC (Data length code) bezeichnet die Länge des Telegramms. Diese setzt sich wie folgt zusammen:

1 Byte Kommando + 2 Byte Objekt + 1 Byte Subindex + Anzahl Datenbyte (0...4).

Das Kommando-Byte legt fest, ob Daten gelesen oder gesetzt werden und um wie viel Datenbyte es sich handelt:

SDO-Kommando	Funktion	Länge	Beschreibung
22h	Download Request	Max. 4 Byte	Parameter an Drehgeber senden
23h	Download Request	4 Byte	
2Bh	Download Request	2 Byte	
2Fh	Download Request	1 Byte	
60h	Download Response	_	Bestätigung der Übernahme an Master
40h	Upload Request	_	Parameter vom Drehgeber anfordern
42h	Upload Request	Max. 4 Byte	Parameter an Master mit max. 4 Byte
43h	Upload Request	4 Byte	
4Bh	Upload Request	2 Byte	
4Fh	Upload Request	1 Byte	
80h	Abort Message		Drehgeber meldet Fehlercode an Master

Eine *abort message* zeigt einen Fehler beim Objektzugriff an. Das SDO-Befehlsbyte ist 80h. Das Objekt und der Subindex sind die des angeforderten Objekts. Der Fehlercode ist in den Bytes 8...5 enthalten.

COB ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580h +	8	80h	Object L	Object H	Subindex	ErrByte 0	ErrByte 1	ErrByte 2	ErrByte 3
Node-ID									

Byte 8...5 ergibt die SDO *abort message* (Byte 8 = MSB). Folgende Nachrichten werden unterstützt:

- 05030000h Toggle-Bit nicht geändert
- 05040001h Kommando nicht gültig oder unbekannt

- 06010001h Lesezugriff auf nur schreiben
- 06010002h Schreibzugriff auf nur lesen
- 06020000h Objekt wird nicht unterstützt
- 06040041h Objekt kann nicht auf PDO abgebildet werden
- 06040042h PDO-Länge würde überschritten werden
- 06040042h Parameter inkompatibel
- 06060000h Zugriffsfehler wegen Hardware Error
- 06070010h Falscher Datentyp
- 06090011h Subindex wird nicht unterstützt
- 06090030h Wert außerhalb des Grenzwerts
- 06090031h Wert zu groß
- 06090032h Wert zu klein
- 08000000h Allgemeiner Fehler
- 08000020h Falsche Speichersignatur
- 08000022h Fehler wegen aktuellem Gerätestatus
- 08000024h Keine Daten verfügbar

SDO-Beispiele

Abfrage eines Wertes vom Slave durch den Master. Eine typische Abfrage ist die Abfrage der Position: Objekt 6004h

COB ID	DLC	Com- mand	Object L	Object H	Subindex	Data 0	Data 1	Data 2	Data 3
600h + Node-ID	8	40h	04h	60h	0	x	х	х	x

Antwort des Slaves auf die Anforderung eines Positionswertes. Der Positionswert ist 4 Bytes lang, die genauen Werte finden Sie unter Objekt 6004h.

COB ID	DLC	Com- mand	Object L	Object H	Subindex	Data 0	Data 1	Data 2	Data 3
580h + Node-ID	8	43h	04h	60h	0	а	b	С	d

Schreiben eines Wertes durch den Master in den Slave. Der Positionswert kann mit dem Preset Objekt 6003h gesetzt werden.

COB ID	DLC	Com- mand	Object L	Object H	Subindex	Data 0	Data 1	Data 2	Data 3
600h + Node-ID	8	22h	03h	60h	0	а	b	С	d

Antwort des Slaves auf das Schreiben eines Wertes.

COB ID	DLC	Com- mand	Object L	Object H	Subindex	Data 0	Data 1	Data 2	Data 3
580h + Node-ID	8	60h	03h	60h	0	а	b	С	d

5.1.3.1 Store parameters

Durch das Schreiben des ASCII-Wertes **save** auf 1010h-x werden die entsprechenden Objekte im nichtflüchtigen Speicher abgelegt. Nach einem Reset oder Power-On werden die Parameter aus dem nichtflüchtigen Speicher geladen.

Die SDO-Anfrage an 1010h-x wird nach erfolgter Speicherung der Parameter beantwortet.

⚠ WARNUNG

Unerwartetes Verhalten des Geräts durch falsche Einstellungen

Bei Unterbrechung der Stromversorgung unmittelbar nach dem Senden des Speicherbefehls werden beim nächsten Einschalten die Werkseinstellungen wiederhergestellt.

a) Stellen Sie sicher, dass die Stromversorgung unmittelbar nach dem Senden des Speicherbefehls nicht unterbrochen wird.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1010h

Name	Object	Subindex	Description
Store parameters	1010h	_	
Highest subindex supported		00h	5
Save all parameters		01h	="evas" (65766173h) to save
Communication parameters		02h	="evas" (65766173h) to save
Application parameters		03h	="evas" (65766173h) to save
Manuf. specific parameters		04h	="evas" (65766173h) to save
Manufacturer LSS Group		05h	="evas" (65766173h) to save

		1	702257011		dez
	0x65	0x76	0x61	0x73	hex
ISO 8859	е	v	а	s	character
Signature	MSB			LSB	

5.1.3.2 Restore default parameters

Durch das Schreiben des ASCII-Wertes *load* auf 1011h-x werden die korrespondierenden Objekte auf Werkseinstellung zurückgestellt.

HINWEIS

Änderungen werden erst nach einem Reset oder Power-On wirksam.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1011h

Name	Object	Subindex	Description
Restore default parameters	1011h	_	
Highest subindex supported		00h	5
All parameters		01h	="daol" (64616F6Ch) to load
Communication parameters		02h	="daol" (64616F6Ch) to load
Application parameters		03h	="daol" (64616F6Ch) to load
Manuf. specific parameters		04h	="daol" (64616F6Ch) to load
Manufacturer LSS Group		05h	="daol" (64616F6Ch) to load
Signature MSB			LSB

		1684107116			dez
	0x64	0x61	0x6F	0x6C	hex
ISO 8859	d	а	o	I	character
Signature	MSB			LSB	

5.1.4 PDO Service

TPDO1 und TPDO2 werden unterstützt. PDOs werden nur im NMT Betriebsmodus **Operational** übertragen.

5.1.4.1 Kommunikationsarten

CANopen kennt verschiedene Kommunikationsarten für die Prozessdatenobjekte. Die folgenden Kommunikationsarten werden unterstützt (Objekt 180xh-2):

Kommunikationsart	Beschreibung
Synchrone Übertragung (1-240)	Bei synchroner Datenübertragung wird das PDO nach dem n-ten Sync-Frame übertragen.
Asynchrone Übertragung (255)	Bei asynchroner Datenübertragung wird das PDO zeitgesteuert übertragen. Der Zeitabstand zwischen 2 PDOs kann im Objekt 180xh-5 oder alternativ in 6200h eingestellt werden.
Herstellerspezifische-Übertragung (254)	Standardeinstellung. Entspricht der asynchronen Übertragung.

Detaillierte Informationen zu den Parametern finden Sie in Kapitel Anhang [63].

5.1.4.2 COB-ID

Die COB-ID für beide PDOs kann über Objekt 180xh-1 geändert werden.

Standardwerte:

TPDO1: 180h + Node-IDTPDO2: 280h + Node-ID

Änderungen werden sofort übernommen.

HINWEIS

Wird die COB-ID für TPDOx überschrieben und gespeichert, so wird diese auch bei nachträglicher Änderung der *Node-ID* beibehalten.

5.1.4.3 PDO mapping

Der Encoder unterstützt dynamisches Mapping. Die beiden Objekte *1A00h* und *1A01* werden für die Konfiguration verwendet.

Die Standardkonfiguration ist im Objektverzeichnis definiert.

Vorgehen:

- a) Deaktivieren Sie das Mapping durch Schreiben von 0 auf Objekt 1A0xh-0.
- b) Schreiben Sie den gewünschten Mapping-Eintrag.
- c) Geben Sie das Mapping wieder frei, indem Sie die Nummer des PDO-Inhalts in Objekt *1A0xh-0* schreiben.

INFO

Mappbare Objekte sind im Objektverzeichnis in der Spalte Access rights mit m gekennzeichnet.

5.1.4.3.1 TPDO mapping parameter

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1A00h

Name	Object	Subindex	Description
Transmit PDO1 mapping	1A00h	_	
Highest subindex supported		00h	Maximum value is 8
1st mapping parameter		01h	Position encoder

CANopen Zugriff: 1A01h

Name	Object	Subindex	Description
Transmit PDO2 mapping	1A01h	_	
Highest subindex supported		00h	Maximum value is 8
1st mapping parameter		01h	Position encoder

5.1.4.3.2 TPDO communication parameter

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1800h

Name	Object	Subindex	Description
Transmit PDO1 mapping	1800h	_	
Highest subindex supported		00h	
COB-ID		01h	COB-ID for TPDO 1
PDO type		02h	Transmission type
Event timer		05h	Cycle time [in ms]

CANopen Zugriff: 1801h

Name	Object	Subindex	Description
Transmit PDO2 mapping	1801h	_	
Highest subindex supported		00h	
COB-ID		01h	COB-ID for TPDO 2
PDO type		02h	Transmission type
Event timer		05h	Cycle time [in ms]

5.1.4.3.3 Cycle timer PDO1

In diesem Objekt ist das Objekt 1800:05h (Event timer) gespiegelt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [§ 63].

CANopen Zugriff: 6200h

Name	Object	Subindex	Description
Cycle timer PDO1	6200h		In milliseconds, internally linked to object 1800:05h

5.1.5 Netzwerkmanagement (NMT)

Das Netzwerkmanagement (NMT) definiert das Kommunikationsverhalten eines *CANopen*-Teilnehmers.

Das Netzwerkmanagement kann in zwei Gruppen unterteilt werden: Mit den NMT-Diensten für die Gerätekontrolle können die Busteilnehmer initialisiert, gestartet und gestoppt werden. Zusätzlich gibt es die NMT-Dienste zur Verbindungsüberwachung.

Folgende Zustände sind möglich:

- Init (Initialisation)
- Pre-Operational
- Operational
- Stopped

Power On or Hardware Reset

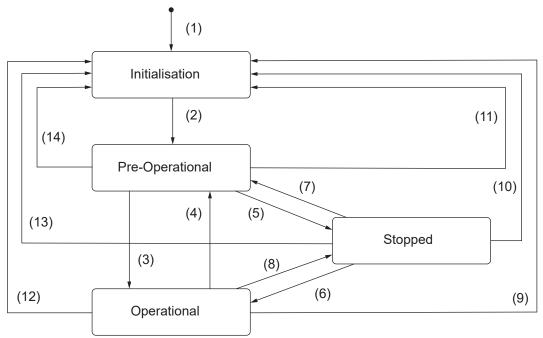


Abb. 3: Zustände eines CANopen-Teilnehmers

At Power On the NMT state initialisation is entered autonomously
NMT state initialisation finished - enter NMT state Pre-Operational automatically
NMT service start remote node indication or by local control
NMT service enter Pre-Operational indication
NMT service stop remote node indication
NMT service start remote node indication
NMT service reset node indication
NMT service reset communication indication

Zustand	Beschreibung
Init (Initialisation)	Nach dem Einschalten geht ein CANopen-Teilnehmer automatisch in
	den Zustand Init. Nach Abschluss der Init geht der Teilnehmer automa-
	tisch in den Zustand <i>Pre-Operational</i> .

Zustand	Beschreibung
Pre-Operational	Die Servicedatenobjekte (SDO) sind aktiv und der Teilnehmer kann konfiguriert werden. Die Prozessdatenobjekte (PDO/SRDO) sind noch gesperrt.
	SDO-Parameter können nur im NMT-Zustand <i>Pre-Operational</i> gelesen/geschrieben werden.
Operational	Die Prozessdatenobjekte (PDO/SRDO) sind aktiv.
	Ist der Encoder aufgrund eines Problems (z.B. CAN-Störung) nicht mehr in der Lage zu lesen bzw. zu kommunizieren, dann versucht er eine entsprechende Emergency-Nachricht zu senden.
	So kann der <i>CANopen</i> -Master schwere Fehler sofort erkennen.
Stopped	Keine Kommunikation mit dem Teilnehmer möglich. Nur NMT-Nachrichten werden empfangen. Die Ausgänge gehen in den Fehlerzustand.

5.1.5.1 NMT Reset Communication

Diese Funktion löst einen Neustart des CAN-Controllers aus.

Die interne Initialisierungszeit ist <1s. Danach wird die Boot-up Message geschickt.

HINWEIS

Alle nicht gespeicherten Konfigurationen gehen verloren.

CANopen: NMT Reset Communication

COB-ID	Byte 0	Byte 1
0	82h	Node-ID
	(NMT Communication Reset)	(0=Broadcast)

Tab. 1: NMT-Frame

Nach erfolgreichem Abschluss der Funktion sendet der Sensor eine Boot-up Message.

COB-ID	Byte 0
700h + Node-ID	00

5.1.5.2 NMT Reset Node

Mit dem Befehl NMT Reset Node wird ein vollständiger Reset des Encoders durchgeführt.

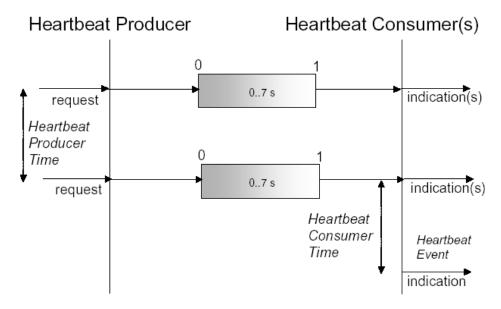
Die interne Initialisierungszeit ist <1s. Danach wird die Boot-up Message geschickt.

HINWEIS

Alle nicht gespeicherten Konfigurationen gehen verloren.

CANopen: NMT Reset Node

COB-ID	Byte 0	Byte 1
0	81h	Node-ID
	(NMT Reset)	(0=Broadcast)


Tab. 2: NMT-Frame

Nach erfolgreichem Abschluss der Funktion sendet der Sensor eine Boot-up Message.

COB-ID	Byte 0
700h + Node-ID	00

5.1.6 Heartbeat

Der Sensor unterstützt die Heartbeat-Producer-Funktionalität. Die Konfiguration erfolgt über das Objekte 1017h.

Ein Heartbeat Producer sendet die Heartbeat-Meldung zyklisch mit der im Objekt Producer heartbeat time festgelegten Häufigkeit. Ein oder mehrere Heartbeat Consumer können die Meldung empfangen. Die Beziehung zwischen Producer und Consumer ist über Einträge im Objektverzeichnis konfigurierbar. Der Heartbeat Consumer überwacht den Empfang des Heartbeat innerhalb der Heartbeat Consumer Time. Wird der Heartbeat nicht innerhalb dieser Zeit empfangen, wird ein Heartbeat Event erzeugt.

Beispiel für ein Heartbeat-Protokoll

COB-ID	Data/Remote	Byte 0
701h	d	7Fh (127d)

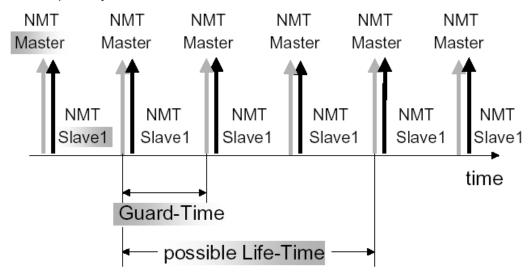
Die Heartbeat-Nachrichten bestehen aus der *COB-ID* und einem Byte. In diesem Byte wird der NMT-Status geliefert.

- 0: Boot Up-Ereignis
- 4: Stopped
- 5: Operational
- 127: Pre-Operational

Das heißt, im Beispiel befindet sich der Sensor im Zustand Pre-Operational (7Fh = 127).

5.1.6.1 Producer heartbeat time

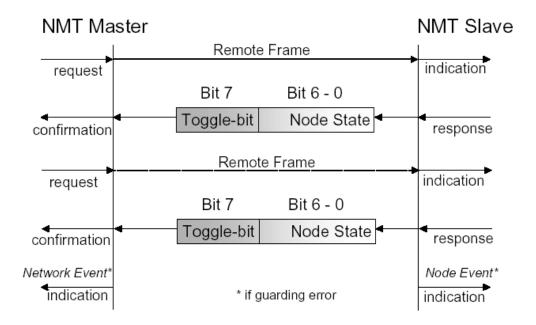
Mit der Funktion *Producer heartbeat time* kann die Producer heartbeat time [ms] gelesen/geschrieben werden.


Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1017h

Name	Object	Subindex	Description
Producer heartbeat time	1017h	_	Producer heartbeat time [ms]. 0=deaktiviert

5.1.7 Node und Life Guarding


Der Sensor unterstützt Node- und Life Guarding Funktionalität. Die Konfiguration erfolgt über die CANopen Objekte 100Ch und 100Dh.

Der NMT-Master kann eine Datenbank mit den jeweiligen NMT-Zuständen der einzelnen Teilnehmer erstellen. Anhand dieses Protokolls lässt sich überprüfen, ob sich ein Teilnehmer vom Bus zurückgezogen hat. Darüber hinaus kann jeder Teilnehmer auch überwachen, ob die Steuerung noch aktiv ist.

Der NMT-Master startet den Überwachungsdienst mit einem Remote-Frame an den gewünschten Teilnehmer. Jeder Remote-Frame setzt die Life-Time an der Station zurück. Außerdem gibt die Station ihren NMT-Status zurück. Dies ermöglicht dem NMT-Master zu überprüfen, ob sich der Teilnehmer im korrekten NMT-Zustand befindet und im Fehlerfall darauf zu reagieren.

Läuft die Life-Time ab, wird ein "Node Event" ausgelöst. Das Verhalten im Fehlerfall ist im Objekt 1029h-1h definiert.

5.1.7.1 Guard time

Mit dieser Funktion kann die Guard time gelesen/geschrieben werden. Die Guard time bestimmt das Intervall, in dem der Sensor überwacht wird (Node Guarding). 0 bedeutet keine Überwachung.

Die Werte von Guard time und Life Time ergeben multipliziert die Watchdog-Länge für die gegenseitige Überwachung (Life Guarding/Node Guarding).

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 100Ch

Name	Object	Subindex	Description
Guard time	100Ch	_	Guard time (actual guard time is Object 100Ch*100Dh [ms])

Sehen Sie dazu auch

- Node und Life Guarding [▶ 22]
- Life time factor [▶ 23]

5.1.7.2 Life time factor

Mit dieser Funktion kann der Life time factor gelesen/geschrieben werden.

Die Werte von Guard time und Life time ergeben multipliziert die Watchdog-Länge für die gegenseitige Überwachung (Life Guarding/Node Guarding).

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 100D

Name	Object	Subindex	Description
Life time factor	100D	_	

5.1.8 Layer Setting Service (LSS)

Baudrate und *Node-ID* können per LSS konfiguriert werden (gemäß CiA 305). Eine weitere Möglichkeit, die Baudrate und *Node-ID* zu ändern, ist der Zugriff auf die Objekte 2100h und 2101h.

INFO

Die für die LSS-Adressierung benötigten Werte wie *Vendor ID*, Revisionsnummer, Produktcode und Seriennummer sind auf einem Etikett am Drehgebergehäuse aufgedruckt.

5.1.8.1 Unterstützte Funktionen

- Switch state global
- Switch state selective
- Bit-Timing-Parameter aktivieren
- Bit-Timing-Parameter konfigurieren
- Node-ID-Protokoll konfigurieren
- Konfiguration speichern
- LSS-Adresse abfragen
 - Identität vendor ID abfragen
 - Identität des Produktcodes abfragen
 - Identität Revisionsnummer abfragen
 - Identitäts-Seriennummer abfragen
- Node-ID abfragen
- LSS Slave identifizieren
- LSS Fastscan

5.1.8.2 Nachrichtenstruktur

COB-ID

Consumer → Producer : 2021 = 7E5h

Consumer ← Producer : 2020 = 7E4h

Nach der COB-ID wird ein LSS comand specifier (cs) übertragen. Anschliessend folgen bis zu sieben angehängte Datenbytes.

COB-ID	cs	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
	-		_,					

Switch state global

	04h	State	Reserved
--	-----	-------	----------

State: 0: Operational state

1: Configuration state

Switch state selective

7E5h →	40h	Vendor ID	Reserved
7E5h →	41h	Produkt- Code	Reserved
7E5h →	42h	Revisi- onsnum- mer	Reserved Reserved
7E5h →	43h	Serien- nummer	Reserved
7E4h ←	44h	Status	Reserved

Vendor ID: 5Fh

Produkt-Code: Interner Produktcode für den jeweiligen Sensor

Revisionsnummer Aktuelle Revisionsnummer des Sensors Seriennummer Eindeutige, fortlaufende Seriennummer

Status Die Antwort des Sensors ist der neue Zustand (0=Betriebszu-

stand; 1=Konfigurationszustand)

Node-ID einstellen

7E5h → 11h	Node-ID	Reserved	d
7E4h ← 11h	Error- Code	Specific Error	Reserved

Node-ID Die neue Node-ID des Sensors

Error-Code \bullet 0 = OK

1 = Node-ID außerhalb des Bereichs

2...254 = reserviert

255 = spezifischer Fehler

Specific Error Bei Error-Code = 255 wird hier der anwendungsspezifischer Feh-

lercode ausgegeben.

Bit-Timing (Baudrate) einstellen

7E5h →	13h	Table- Sel	TableInd	Reser- ved
7E4h	13h		Specific Error	Reser-
←		Code		ved

TableSel Wählt die Bit-Timing-Tabelle aus; 0 = Standard CiA Bit-Timing-Ta-

belle

TableInd Bit-Timing-Eintrag in der ausgewählten Tabelle.

Error-Code \bullet 0 = OK

■ 1 = Node-ID außerhalb des Bereichs

2...254 = reserviert

255 = spezifischer Fehler

Specific Error Bei Error-Code = 255 wird hier der anwendungsspezifischer Feh-

lercode ausgegeben.

Hinweise:

- Für die Einstellung des Bit-Timings über LSS sind die Werte gemäß der Standard-CIA-Bit-Timing-Tabelle zu verwenden.
- Zur nichtflüchtigen Speicherung muss Konfiguration speichern ausgeführt werden.
- Die geänderte Baudrate oder *Node-ID* wird erst nach einem Neustart des Geräts wirksam.

5.1.9 Baudrate

Mit dieser Funktion kann der Encoder auf eine bestimmte Baudrate konfiguriert werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2100h

Name	Object	Subindex	Description
Baudrate	2100h	_	0: 10 kBit/s (not supported)
			1: 20 kBit/s (not supported)
			• 2: 50 kBit/s
			■ 3: 100 kBit/s
			• 4: 125 kBit/s
			• 5: 250 kBit/s
			■ 6: 500 kBit/s
			■ 7: 800 kBit/s
			■ 8: 1000 kBit/s

HINWEIS

Tabelle weicht von CiA-Standard-Bit-Timing-Tabelle für LSS ab.

- Die neue Baudrate muss mit dem Objekt 1010h im nichtflüchtigen Speicher abgelegt werden.
- Die neue Baudrate wird nach einem Neustart oder NMT Reset des Geräts wirksam.
- Die Einstellung der Baudrate / des Bittimings ist auch über LSS möglich.

5.1.10 Node-ID

Mit dieser Funktion kann die Node-ID gelesen und geschrieben werden.

CANopen Zugriff: 2101h

Eine neue *Node-ID* wird nach einem NMT Reset oder nach dem Einschalten aktiviert (wenn die Parameter im nichtflüchtigen Speicher abgelegt sind).

Name	Object	Subindex	Description
Node-ID	2101h	_	Node-ID 1127 possible

5.1.11 SRDO COB-ID Konfiguration

Die COB-IDs für die 3 SRDOs werden nach folgenden Formeln und Tabellen automatisch zugewiesen:

HINWEIS

- a) Node-IDs, die im Bereich 1 ... 22 konfiguriert sind, werden automatisch COB-IDs für SRDOs zugewiesen, ohne dass es zu Kollisionen kommt.
- b) Node-IDs, die im Bereich 23 ... 127 konfiguriert sind, können zu einer Kollision der SRDO COB-IDs führen, die manuell aufgelöst werden muss (siehe nachfolgende Tabellen)

	COB-ID 1 normal	COB-ID 2 inverted
SR- DO1	FFh + (2 * Node-ID); If result > 17Fh then 17Fh is automatically assigned as default value	FFh + 1 + (2 * Node-ID);If result > 180h then 180h is automatically assigned as default value
SR- DO2	129h + (2 * Node-ID); If result > 17Fh then 17Fh is automatically assigned as default value	129h + 1 + (2 * Node-ID);If result > 180h then 180h is automatically assigned as default value
SR- DO3	153h + (2 * Node-ID); If result > 17Fh then 17Fh is automatically assigned as default value	153h + 1 + (2 * Node-ID);If result > 180h then 180h is automatically assigned as default value

Tab. 3: SRDO COB-ID Berechnung

Node-ID	SRDO1 COB-ID			SRDO2 COB-ID			SRDO3 COB-ID					
	nor	mal	inv	ert.	nor	mal	inv	ert.	nor	mal	inv	ert.
	dez	hex	dez	hex	dez	hex	dez	hex	dez	hex	dez	hex
1	257	101h	258	102h	299	12Bh	300	12Ch	341	155h	342	156h
2		103h		104h		12Dh		12Eh		157h		158h
3		105h		106h		12Fh		130h		159h		15Ah
4		107h		108h		131h		132h		15Bh		15Ch
5		109h		10Ah		133h		134h		15Dh		15Eh
6		10Bh		10Ch		135h		136h		15Fh		160h
7		10Dh 10Fh		10Eh		137h 139h		138h		161h		162h
8		10Fn 111h		110h 112h		139n 13Bh		13Ah 13Ch		163h 165h		164h 166h
10		113h		114h		13Dh		13Eh		167h		168h
11		115h		116h		13Fh		140h		169h		16Ah
12		117h		118h		141h		142h		16Bh		16Ch
13		119h		11Ah		143h		144h		16Dh		16Eh
14		11Bh		11Ch		145h		146h		16Fh		170h
15	285	11Dh	286	11Eh	327	147h	328	148h	369	171h	370	172h
16	287	11Fh	288	120h	329	149h	330	14Ah	371	173h	372	174h
17		121h		122h		14Bh		14Ch		175h		176h
18		123h		124h		14Dh		14Eh		177h		178h
19		125h		126h		14Fh		150h		179h		17Ah
20		127h		128h		151h		152h		17Bh		17Ch
21		129h		12Ah		153h		154h		17Dh		17Eh
22		12Bh		12Ch 12Eh		155h 157h		156h		17Fh		180h
23 24		12Dh 12Fh		130h		159h		158h 15Ah		17Fh 17Fh		180h 180h
25		131h		132h		15Bh		15Ch		17Fh		180h
26		133h		134h		15Dh		15Eh		17Fh		180h
27		135h		136h		15Fh		160h		17Fh		180h
28		137h		138h		161h		162h		17Fh		180h
29		139h		13Ah		163h		164h		17Fh		180h
30	315	13Bh	316	13Ch	357	165h	358	166h	383	17Fh	384	180h
31	317	13Dh	318	13Eh	359	167h	360	168h	383	17Fh	384	180h
32	319	13Fh	320	140h	361	169h	362	16Ah		17Fh	384	180h
33		141h		142h		16Bh		16Ch		17Fh		180h
34		143h		144h		16Dh		16Eh		17Fh		180h
35		145h 147h		146h		16Fh		170h		17Fh		180h 180h
36 37		147n 149h		148h 14Ah		171h 173h		172h 174h		17Fh 17Fh		180h 180h
38		14911 14Bh		14Ch		175h		176h		17Fh		180h
39		14Dh		14Eh		177h		178h		17Fh		180h
40		14Fh		150h		179h		17Ah		17Fh		180h
41		151h		152h		17Bh		17Ch		17Fh		180h
42		153h		154h		17Dh		17Eh		17Fh		180h
43	341	155h	342	156h		17Fh		180h	383	17Fh	384	180h
44		157h		158h		17Fh		180h		17Fh		180h
45		159h		15Ah		17Fh		180h		17Fh		180h
46		15Bh		15Ch		17Fh		180h		17Fh		180h
47 48		15Dh		15Eh		17Fh		180h		17Fh		180h
48 49		15Fh		160h		17Fh		180h		17Fh		180h
49 50		161h 163h		162h 164h		17Fh 17Fh		180h 180h		17Fh 17Fh		180h 180h
51		165h		166h		17Fh		180h		17Fh		180h
52		167h		168h		17Fh		180h		17Fh		180h
53		169h		16Ah		17Fh		180h		17Fh		180h
54		16Bh		16Ch		17Fh		180h		17Fh		180h
55		16Dh		16Eh		17Fh		180h		17Fh		180h
56		16Fh		170h		17Fh		180h		17Fh		180h
57		171h		172h		17Fh		180h		17Fh		180h
58		173h		174h		17Fh		180h		17Fh		180h
59		175h		176h		17Fh		180h		17Fh		180h
60		177h		178h		17Fh		180h		17Fh		180h
61 62		179h 17Bh		17Ah 17Ch		17Fh 17Fh		180h 180h		17Fh 17Fh		180h 180h
63		17Dh		17Eh		17Fh		180h		17Fh		180h
64		17Fh		180h		17Fh		180h		17Fh		180h
J.	505		554		555		1		555		504	

Node-ID	SRDO1 COB-ID		SRDO2 COB-ID		SRDO3 COB-ID	
	normal	invert.	normal	invert.	normal	invert.
65	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
66	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
67	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
68	383 17Fh 383 17Fh	384 180h	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h
69 70	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h	383 17Fh 383 17Fh	384 180h 384 180h
70	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
72	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
73	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
74	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
75	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
76	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
77	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
78	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
79	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
80 81	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h
82	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
83	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
84	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
85	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
86	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
87	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
88	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
89	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
90	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
91	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
92	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
93	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
94 95	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h
96	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
97	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
98	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
99	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
100	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
101	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
102	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
103	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
104	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
105	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
106 107	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
107	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h
108	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
110	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
111	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
112	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
113	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
114	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
115	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
116	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
117	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
118 119	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h
119	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h	383 17Fh 383 17Fh	384 180h 384 180h
120	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
122	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
123	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
124	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
125	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
126	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
127	383 17Fh	384 180h	383 17Fh	384 180h	383 17Fh	384 180h
127	383 11/FN	384 180h	383 17FN	384 180h	383 I 1/FN	384 18UN

Abb. 4: SRDO COB-ID Tabelle

Orange markierte COB-IDs müssen durch Schreiben der SDOs 130xh-05h und 130xh-06h auf eine bisher nicht verwendete COB-ID im gültigen Bereich (nicht orange markiert) gesetzt werden.

5.1.12 Identifikation

5.1.12.1 Baumer Device Information

Mit dieser Funktion können die Hersteller-spezifischen Geräteinformationen ausgelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2800h

Name	Object	Subindex	Description
Baumer Device Informati-	2800h		
on			
Highest subindex supported		00h	
Serial Number		01h	String version of 1018h-04h, resp. 650Bh
Article Number		02h	SAP number of the encoder
Order Number		03h	Baumer order number
Product key		04h	EAM580RS_MT / EAM580RS_ST
Product name		05h	e.g. EAM580RS-SCB.EJCS.14180.J
Manufacturer date		06h	Date in format "DD.MM.YYYY hh:mm:ss"

5.1.12.2 Device Name

Mit dieser Funktion kann der Gerätename (Gerätebezeichnung des Herstellers) des Sensors ausgelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1008h

Name	Object	Subindex	Description
DeviceName	1008h	_	DeviceName: EAM580RS_MT bzw.
			EAM580RS_ST

5.1.12.3 Device Type

Mit der Funktion Gerätetyp können Sie den Gerätetyp auslesen.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1000h

Name	Object	Subindex	Description
Device Type	1000h	_	00010196h: Singleturn encoder
			00020196h: Multiturn encoder

5.1.12.4 Identity object

Mit der Funktion *Identify Object* können Produktinformationen auslesen werden. Dazu zählen:

- Vendor ID
- Produktcode
- Revision number
- Seriennummer

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1018h

Name	Object	Subindex	Description
Identity object	1018h		
Highest subindex supported		00h	
Vendor ID		01h	Vendor ID
Product code		02h	80h: EAM580RS_MT Multiturn Encoder81h: EAM580RS_ST Singleturn Encoder
Revision number		03h	Product revision No.
Serial number		04h	Serial No.

5.1.12.5 Module identification

Mit dieser Funktion kann der Hersteller-spezifische Offset gelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 650Ah

Name	Object	Subindex	Description
Module identification	650Ah		
Highest subindex supported		00h	
Manufacturer offset		01h	

5.1.12.6 Profile & software version

Mit dieser Funktion können die Software-Version und das Profil als Hex-Wert ausgelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6507h

Name	Object	Subindex	Description
Profile & software version	6507h	_	Contains the implemented encoder device profile version and the manufacturer specific
			software version.

5.1.12.7 Serial number

Mit der Funktion Seriennummer können Sie die Seriennummer des Sensors auslesen.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 650Bh

Name	Object	Subindex	Description
Serial number	650Bh	_	Internally linked to object 1018h-4h

5.1.12.8 Software version

Mit dieser Funktion kann die Firmware-Version des Sensors ausgelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 100Ah

Name	Object	Subindex	Description
Software version	100Ah	_	Manufacturer software version

5.1.13 Diagnosefunktionen

5.1.13.1 Operating Status

Mit der Funktion *Operating Status* können Sie den aktuellen Betriebsstatus des Sensors auslesen.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6500h

Name	Object	Subindex	Description
Operating Status	6500h	_	Bit 0:
			0: Position CW
			1: Position CCW
			Bit 2:
			0: Scaling function disabled
			1: Scaling function enabled

5.1.13.2 Operation Time

Mit der Funktion *Operation Time* können Sie die Betriebszeit des Sensors auslesen.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2A00h

Name	Object	Subindex	Description
Operation Time	2A00h	_	_
Highest subindex supported		00h	_
Current		01h	Currrent operation time since boot up [s].
Total		02h	Total operation time [s].

CANopen Zugriff: 6508h

Name	Object	Subindex	Description
Operating Time	6508h	_	Operating time in 0.1 hours

5.1.13.3 Operation Cycle Counter

Mit der Funktion Operation Cycle Counter kann die Anzahl Betriebszyklen ausgelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2A01h

Name	Object	Subindex	Description
Operation Cycle Counter	2A01h	_	Number of operating cycles. Incremented at
			Power On.

5.1.13.4 External Supply Voltage

Mit der Funktion *Externe Spannungsversorgung* können Informationen zur externen Spannungsversorgung ausgelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2A20h

Name	Object	Subindex	Description
External Supply Voltage	2A20h	_	
Highest subindex supported		00h	
Current		01h	Current external supply voltage [mV]
Min		02h	Min. external supply voltage [mV]
Max		03h	Max. external supply voltage [mV]

5.1.13.5 Battery Voltage

Mit der Funktion *Batteriespannung* können Sie die vom Sensor bereitgestellten Informationen zur Batteriespannung auslesen.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2A80h

Name	Object	Subindex	Description
Battery Voltage	2A80h		
Highest subindex supported		00h	
Current		01h	Current battery voltage [mV]

5.1.13.6 Temperatur

Mit dieser Funktion können Sie die vom Sensor bereitgestellten Informationen zur Temperatur auslesen

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2A40h

Name	Object	Subindex	Description
Temperature	2A40h		
Highest subindex supported		00h	
Current		01h	Current Temperature [°C]
Min		02h	Min. Temperature [°C]
Max		03h	Max. Temperature [°C]

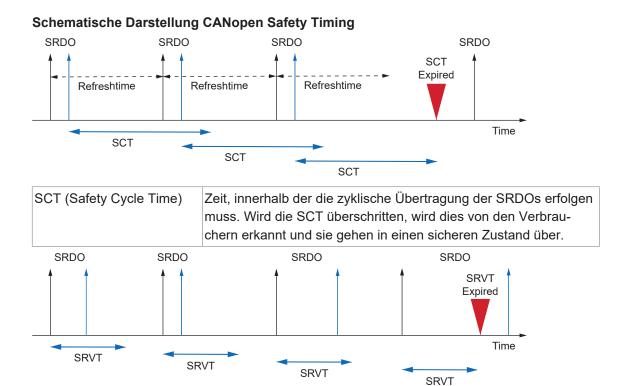
5.1.13.7 CW / CCW Information

Mit der Funktion kann die Anzahl der überstrichenen Umdrehungen pro Drehrichtung ausgelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [§ 63].

CANopen Zugriff: 2A81h

Name	Object	Subindex	Description
CW / CCW Information	2A81h	_	
Highest subindex supported		00h	
CW Counter		01h	Total number of revolutions clockwise
CCW Counter		02h	Total number of counter-clockwise revolutions


5.2 CANopen safety

5.2.1 SRDO-Kommunikation

Neben den herkömmlichen CANopen-Diensten zur Datenübertragung (z. B. SDO und PDO) ist für die Safety-Erweiterung mit dem SRDO-Dienst (Safety Related Data Object) ein spezieller Dienst für diese Datenübertragung definiert.

Die Konfiguration und die Art der Kommunikation ist ähnlich wie PDO. Die SRDO-Kommunikation bietet jedoch folgende zusätzliche Eigenschaften:

- zyklische Datenübertragung mit Timeout-Überwachung
- Doppelte Übertragung von Nutzdaten, einmal bitweise invertiert
- Prüfung der Datenkonsistenz
- Überprüfung des zeitlichen Abstandes der invertierten und nicht invertierten Daten
- Absicherung der Konfiguration durch einen CRC

SRVT (Safety-related Validation Time)

Beschreibt die Zeitspanne, die zwischen 2 CAN-Nachrichten eines SRDO liegen darf.

Es werden COB-IDs im Bereich von 100h bis 180h verwendet, damit die Übertragung im CANopen-Netzwerk andere Dienste nicht stört und die Priorität der CAN-IDs höher ist als die von PDOs.

5.2.1.1 SRDO-CAN-Message Struktur

SRD01 Data Byte 3 Data Byte 0 Data Byte 1 Data Byte 2 29 30 31 10 11 12 13 18 19 20 21 26 27 28 LSB MSB Position Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25 26 27 28 29 30 31 LSB MSB Position invertiert SRD02 SRD03 Data Byte 0 Data Byte 1 Data Byte 0 Data Byte 1 10 11 12 13 14 15 0 10 11 12 13 14 15 3 4 5 3 LSB **MSB** LSB **MSB** Geschwindigkeit Beschleunigung Data Byte 1 Data Byte 0 Data Byte 0 Data Byte 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3 4 5 6 7 8 9 10 11 12 13 14 15 LSB **MSB** LSB MSB Geschwindigkeit invertiert Beschleunigung invertiert Abb. 5: SRDO CAN-Message-Struktur

5.2.2 Safety-Funktionen

5.2.2.1 Konfigurieren der sicheren Kommunikationsparameter

- 1301h 1303h ... SRDO Kommunikationsparameter
- 1381h 1383h ... SRDO Mapping-Parameter
- 13FEh ... Kennzeichen für gültige Konfiguration
- 13FFh ... Sicherheitskonfiguration CRCs

Das in der Norm *EN50325-5* angegebene CRC-Polynom zur Berechnung der Sicherheitskonfiguration-Signatur (Objekt 13FFh) muss die Daten gemäß *EN50325-5* verwenden.

5.2.2.2 CRC-Generierung

CRC-Prüfsummen (*Cyclic Redundancy Check*) für sichere Kommunikations- und Anwendungsparameter können mit dem *Baumer Safety CRC Tool* berechnet werden.

Die berechneten Prüfsummen müssen in die entsprechenden Objekte (13FFh, 31FFh) eingefügt werden.

Im Folgenden sind die CRCs für Werkseinstellungen dokumentiert:

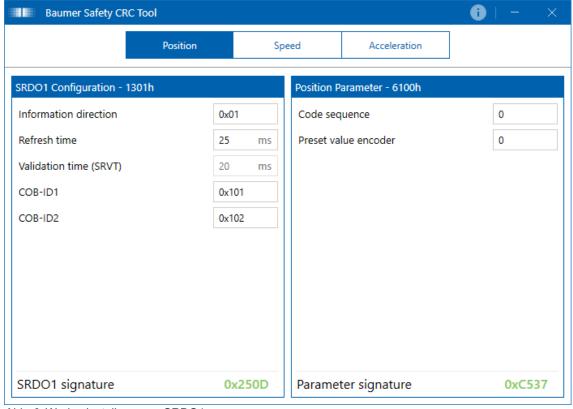


Abb. 6: Werkseinstellungen – SRDO1

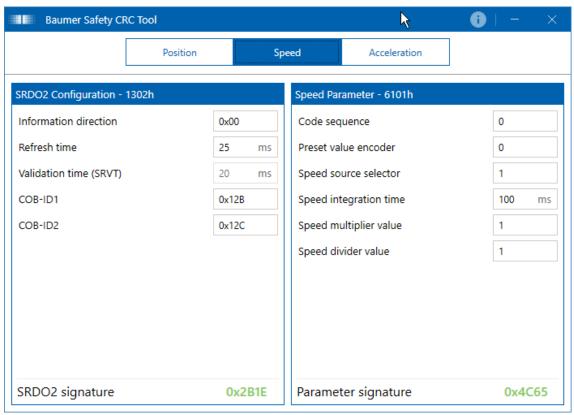


Abb. 7: Werkseinstellungen - SRDO2



Abb. 8: Werkseinstellungen – SRDO3

Baumer Schnittstellen | 5

5.2.2.3 Configuration valid

Mit dieser Funktion muss bestätigt werden, dass die Konfiguration der Safety-Konfiguration abgeschlossen und gültig ist (Wert A5h).

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 13FEh

Name	Object	Subindex	Description
Configuration valid	13FEh	_	Must be actuated with the value A5h.

5.2.2.4 Safety position configuration parameters

Mit dieser Funktion können die *Safety position configuration parameters* gelesen/geschrieben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [§ 63].

CANopen Zugriff: 6100h

Name	Object	Subindex	Description
Safety position configura- tion parameters	6100h	_	_
Highest subindex supported		00h	
Code Sequence		01h	Code Sequence
Preset		02h	Preset for safety position

5.2.2.5 Safety speed configuration parameters

Mit dieser Funktion können die *Safety speed configuration parameters* gelesen/geschrieben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6101h

Name	Object	Subindex	Description
Safety speed configuration parameters	6101h	_	_
Highest subindex supported		00h	_
Code Sequence		01h	_
Preset		02h	_
Safety speed source selector		04h	_
Safety speed integration time		05h	_
Safety speed multiplier value		06h	_
Safety speed divider value		07h	_

5.2.2.6 Safety position value / Safety inverted position value

In den zwei folgenden Objekten ist die sichere Position *normal* und *invertiert* als Array abgelegt. Die sichere Position besteht aus 14 Bit Singleturn und 18 Bit Multiturn.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6120h

In diesem Objekt ist die sichere Position normal als Array gespeichert.

Name	Object	Subindex	Description
Safety position value	6120h	_	
Highest subindex supported		00h	
Safety position 1st Byte		01h	
Safety position 2nd Byte		02h	
Safety position 3rd Byte		03h	
Safety position 4th Byte		04h	

CANopen Zugriff: 6121h

In diesem Objekt ist die sichere Position invertiert als Array gespeichert.

Name	Object	Subindex	Description
Safety inverted position value	6121h	_	
Highest subindex supported		00h	
Safety position 1st Byte		01h	
Safety position 2nd Byte		02h	
Safety position 3rd Byte		03h	
Safety position 4th Byte		04h	

5.2.2.7 Safety speed value / Safety speed inverted value

In den zwei folgenden Objekten ist die sichere Geschwindigkeit *normal* und *invertiert* als Array abgelegt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6124h

In diesem Objekt ist die sichere Geschwindigkeit normal als Array gespeichert.

Name	Object	Subindex	Description
Safety speed value	6124h	_	
Highest subindex supported		00h	
Safety speed 1st Byte		01h	
Safety speed 2nd Byte		02h	

CANopen Zugriff: 6125h

In diesem Objekt ist die sichere Geschwindigkeit invertiert als Array gespeichert.

Name	Object	Subindex	Description
Safety speed inverted value	6125h	_	
Highest subindex supported		00h	
Safety speed 1st Byte		01h	
Safety speed 2nd Byte		02h	

5.2.2.8 Safety application configuration valid

Mit dieser Funktion wird die Safety application configuration valid gesetzt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 61FEh

Name	Object	Subindex	Description
Safety application confi-	61FEh	_	is to be set valid (value A5h), after the Safety
guration valid			application configuration is completed

5.2.2.9 Safety acceleration parameter

Mit dieser Funktion können die Safety acceleration parameter gelesen/geschrieben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 3100h

Name	Object	Subindex	Description
Safety acceleration parameter	3100h	_	_
Highest subindex supported		0	_
Code Sequence		01h	_
Preset		02h	_
Safety speed source selector		04h	
Safety speed integration time		05h	_
Safety speed multiplier value		06h	_
Safety speed divider value		07h	_
Safety acceleration source selector		08h	_
Safety acceleration integration time		09h	_
Safety acceleration multiplier value		0Ah	_
Safety acceleration divider value		0Bh	_

Baumer Schnittstellen | 5

5.2.2.10 Safety acceleration configuration signature

Mit dieser Funktion wird die Safety acceleration signature (CRC) geschrieben.

CANopen Zugriff: 31FFh

Name	Object	Subindex	Description
Safety acceleration confi-	31FFh	_	CRC value covering objects 3100h-xx
guration signature			

5.2.2.11 Safety configuration signature

Mit dieser Funktion wird die Safety configuration signature (CRC) geschrieben.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 13FFh

Name	Object	Subindex	Description
Safety configuration signature	13FFh	_	
Highest subindex supported		00h	
SRDO1 signature (CRC)		01h	CRC covers objects 1301h-xx
SRDO2 signature (CRC)		02h	CRC covers objects 1302h-xx
SRDO3 signature (CRC)		03h	CRC covers objects 1303h-xx

5.2.2.12 Safety acceleration value

In den zwei folgenden Objekten ist die sichere Beschleunigung "normal" und "invertiert" als Array abgelegt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [§ 63].

CANopen Zugriff: 3000h

Name	Object	Subindex	Description
Safety acceleration value	3000h	_	In this object the safe acceleration is stored "normal" as an array.
Highest subindex supported		00h	
Safety acceleration 1st byte		01h	
Safety acceleration 2nd byte		02h	

CANopen Zugriff: 3001h

Name	Object	Subindex	Description
Safety acceleration inverted value	3001h	_	In this object the safe acceleration is stored "inverted" as an array.
Highest subindex supported		00h	
Safety acceleration 1st byte		01h	
Safety acceleration 2nd byte		02h	

Baumer Schnittstellen | 5

5.2.2.13 SRDOx

5.2.2.13.1 SRDO1 Kommunikationsparameter

Mit dieser Funktion können die SRDO1 Kommunikationsparameter gelesen/geschrieben werden.

CANopen Zugriff: 1301h

Name	Object	Subindex	Description
SRDO1 communication	1301h	_	_
param.			
Highest subindex suppor-		00h	_
ted			
Information direction		01h	00h: not valid
			01h: valid, Tx, SRDO producer
Refresh-time SCT		02h	Safety Cycle Time
Validation Time SRVT		03h	Safety-related Validation Time
Transmission type		04h	_
COB-ID 1		05h	COB-ID for not inverted SRDO frame
COB-ID 2		06h	COB-ID for inverted SRDO frame

5.2.2.13.2 SRDO1 Mapping-Parameter

Mit dieser Funktion können die SRDO1 Mapping-Parameter gelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1381h

Name	Object	Subindex	Description
SRDO1 mapping parameter	1381h	_	_
Highest subindex supported		00h	_
SR app. data object 1		01h	Safety position 1st byte (LSB)
SR app. data object 1 inverted		02h	Safety position inverted 1st byte (LSB)
SR app. data object 2		03h	Safety position 2nd byte
SR app. data object 2 inverted		04h	Safety position inverted 2nd byte
SR app. data object 3		05h	Safety position 3rd byte
SR app. data object 3 inverted		06h	Safety position inverted 3rd byte
SR app. data object 4		07h	Safety position 4th byte (MSB)
SR app. data object 4 inverted		08h	Safety position inverted 4th byte (MSB)

5.2.2.13.3 SRDO2 Kommunikationsparameter

Mit dieser Funktion können die SRDO2 Kommunikationsparameter gelesen/geschrieben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1302h

Name	Object	Subindex	Description
SRDO2 communication param.	1302h	_	_
Highest subindex supported		00h	_
Information direction		01h	00h: not valid01h: valid, Tx, SRDO producer
Refresh-time SCT	-	02h	Safety Cycle Time
Validation Time SRVT	-	03h	Safety-related Validation Time
Transmission type		04h	_
COB-ID 1		05h	COB-ID for not inverted SRDO frame
COB-ID 2		06h	COB-ID for inverted SRDO frame

5.2.2.13.4 SRDO2 Mapping-Parameter

Mit dieser Funktion können die SRDO2 Mapping-Parameter gelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1382h

Name	Object	Subindex	Description
SRDO2 mapping parameter	1382h	_	_
Highest subindex supported		00h	_
SR app. data object 1		01h	Safety speed 1st byte (LSB)
SR app. data object 1 inverted		02h	Safety speed inverted 1st byte (LSB)
SR app. data object 2		03h	Safety speed 2nd byte (MSB)
SR app. data object 2 inverted		04h	Safety speed inverted 2nd byte(MSB)

Baumer Schnittstellen | 5

5.2.2.13.5 SRDO3 Kommunikationsparameter

Mit dieser Funktion können die SRDO3 Kommunikationsparameter gelesen/geschrieben werden

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1303h

Name	Object	Subindex	Description
SRDO3 communication param.	1303h	_	_
Highest subindex supported		00h	_
Information direction		01h	00h: not valid
			01h: valid, Tx, SRDO producer
Refresh-time SCT		02h	Safety Cycle Time
Validation Time SRVT		03h	Safety-related Validation Time
Transmission type		04h	-
COB-ID 1		05h	COB-ID for not inverted SRDO frame
COB-ID 2		06h	COB-ID for inverted SRDO frame

5.2.2.13.6 SRDO3 Mapping-Parameter

Mit dieser Funktion können die SRDO3 Mapping-Parameter gelesen werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [§ 63].

CANopen Zugriff: 1383h

Name	Object	Subindex	Description
SRDO3 mapping parameter	1383h	_	_
Highest subindex supported		00h	
SR app. data object 1		01h	Safety acceleration 1st byte (LSB)
SR app. data object 1 inverted		02h	Safety acceleration inverted 1st byte (LSB)
SR app. data object 2		03h	Safety acceleration 2nd byte (MSB)
SR app. data object 2 inverted		04h	Safety acceleration inverted 2nd byte (MSB)

5.3 Emergency Service

Liegt ein Fehler am Gerät vor, sendet es eine Emergency-Nachricht und setzt die entsprechenden Bits im Fehlerregister (Objekt 1001h).

Auf die Fehlercodes kann über das Objekt 1003h-x zugegriffen werden. Im Fehlerregister wird eine Historie von maximal 8 Fehlercodes gespeichert.

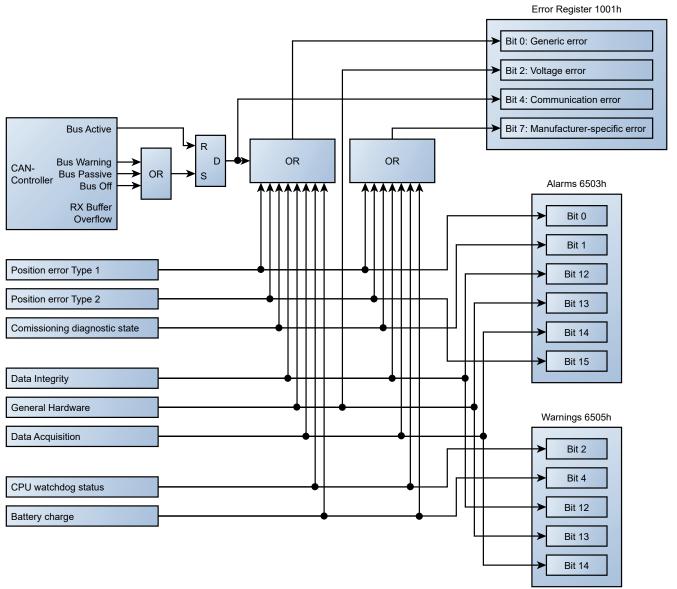


Abb. 9: Schematische Darstellung Fehlerregister

5.3.1 COB-ID

Die COB-ID für die Emergency Message kann geändert werden (über Objekt 1014h).

Standardwert: 80h + Node-ID

Änderungen werden sofort übernommen.

HINWEIS

Wird die COB-ID manuell geändert und gespeichert, so wird diese bei einer nachträglichen Anpassung der Node-ID nicht geändert.

Baumer Schnittstellen | 5

5.3.2 Emergency COB-ID

Mit dieser Funktion kann die Emergency COB-ID des Sensors gelesen/geschrieben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1014h

Name	Object	Subindex	Description
Emergency COB-ID	1014h	_	COB-ID of the emergency object

5.3.3 Error Register

Mit der Funktion Fehlerregister können Sie das Fehlerregister des Sensors auslesen.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1001h

Name	Object	Subindex	Description
Error Register	1001h	_	Bit0: Generic error
			■ Bit2: Voltage error
			■ Bit4: Communication error
			■ Bit7: Manufacturer-specific error

5.3.4 Error behaviour

Mit der Funktion *Fehlerverhalten* kann das Verhalten des Sensors im Fehlerfall eingestellt werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 1029h

Name	Object	Subindex	Description
Error behaviour	1029h	_	
Highest subindex supported		00h	
Communication error		01h	0h: Change to pre-operational mode
Generic error		02h	■ 1h: No state change
Voltage error		03h	2h: Change to stopped mode

5.3.5 Error Injection

Mit der Funktion Fehlersimulation können für Testfälle Fehler im Sensor simuliert werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 2116h

Name	Object	Subindex	Description
Error Injection	2116h	_	Simulation of encoder errors for test purposes
Highest subindex supported		00h	
Warning		01h	1: Emergency Warning is simulated
Alarm		02h	1: Emergency Alarm is simulated

5.3.6 Alarms

Mit der Funktion *Alarms* können die aktuell beim Sensor anstehenden Alarme ausgegeben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6503h

Name	Object	Subindex	Description
Alarms	6503h	_	Object 6503h provides alarm information ac-
			cording the following table.

Folgende Alarme werden unterstützt:

Bit	Description	Value=0	Value=1
0	Position error type 1	Not occurred	Occurred
1	Commissioning diagnostic state	OK	Error
2 11	Reserved	_	_
12	Data Integrity	OK	Not OK
13	General Hardware	OK	Not OK
14	Data Acquisition	OK	Not OK
15	Position error type 2	Not occurred	Occurred

5.3.7 Supported alarms

Baumer

Mit dieser Funktion werden die vom Sensor aktuell unterstützten Alarme ausgegeben.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6504h

Name	Object	Subindex	Description
Supported alarms	6504h	_	Contains the information on supported alarms
			by the encoder.

5.3.8 Warnings

Mit der Funktion *Warnungen* können die aktuell beim Sensor anstehenden Warnungen ausgegeben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6505h

Name	Object	Subindex	Description
Warnings	6505h	_	Object 6505h provides warning information
			according the following table

Bit	Description	Value=0	Value=1
0	Reserved	_	_
1	Reserved	_	_
2	CPU watchdog status	OK	Reset generated
3	Reserved	_	_
4	Battery charge	OK	Too low
5	Reserved	_	_
6	Reserved	_	_
7	Reserved	_	_
8	Reserved	_	_
9 11	Reserved	_	_

Bit	Description	Value=0	Value=1
12	Data Integrity	OK	Not OK
13	General Hardware	OK	Not OK
14	Data Acquisition	OK	Not OK
15	Reserved	_	_

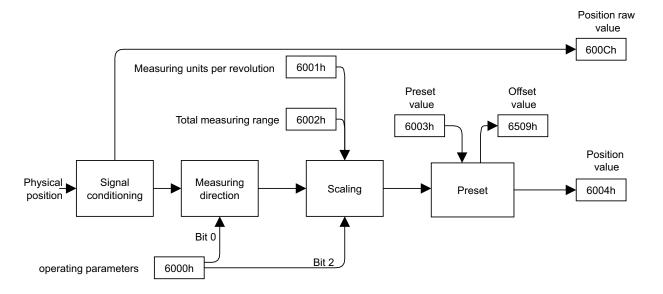
5.3.9 Supported warnings

Mit dieser Funktion werden die vom Sensor aktuell unterstützten Warnungen ausgegeben.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6506h

Name	Object	Subindex	Description
Supported warnings	6506h	_	Contains the information on supported war-
			nings by the encoder.


6 Betriebsfunktionen

6.1 Position encoder value

Mit dieser Funktion kann die Position des Drehgebers ausgelesen werden.

Die Position wird als Teil der zyklischen Kommunikation (Prozessdaten) übertragen. Zusätzlich steht die Positionsinformation auch über die azyklische Kommunikation zur Verfügung.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

Der Bereich der Position ist abhängig von der Einstellung der Objekte 6001h und 6002h.

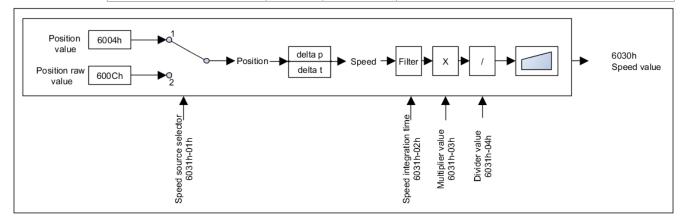
CANopen Zugriff: 6004h

Name	Object	Subindex	Description
Position encoder value	6004h	_	Position in steps, scaled value

CANopen Zugriff: 600Ch

Name	Object	Subindex	Description
Position encoder raw va-	600Ch	_	Position in steps, raw value
lue			

6 | Betriebsfunktionen Baumer


6.2 Speed Value

Die Funktion *Geschwindigkeit* liefert eine 16-Bit Geschwindigkeitsinformation mit der Einheit [Steps/sec].

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6030h

Name	Object	Subindex	Description
Speed Value	6030h		
Highest sub-index sup- ported		00h	
Speed Value		01h	Speed value in steps/second

INFC

Während der *Speed integration time* (6031h-02) ist der mit *Speed Value* (6030h) ermittelte Wert nicht gültig.

6.3 Speed parameter

Mit der Funktion *Geschwindigkeitsparameter* können Sie verschiedene Parameter zur Ermittlung der Geschwindigkeit anpassen.

CANopen Zugriff: 6031h

Name	Object	Subindex	Description
Speed parameter	6031h		
Highest sub-index sup- ported		00h	
Speed source selector		01h	■ 1: 6004h Position value
			2: 600Ch Position raw value
Speed integration time		02h	in ms
Multiplier value		03h	Output value multiplier
Divider value		04h	Output value divider

6.4 Acceleration Value

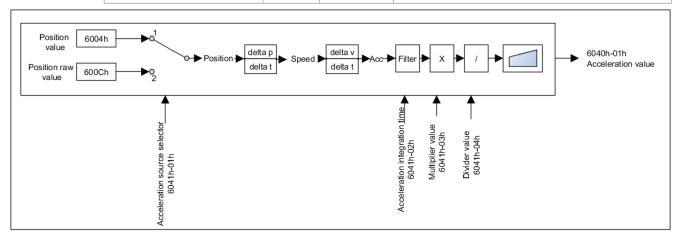
Diese Funktion liefert eine 16-Bit Beschleunigungsinformation, welche die Einheit [Steps/sec²] hat.

Da der Beschleunigungswert ein hochdynamischer Wert ist, sollte der Benutzer die Skalierung und Filterung an seine Anwendung anpassen. Da es sich bei dem Ausgabewert um einen 16-Bit-Wert handelt, muss der Benutzer auf die Grenzwerte achten.

Einheit des Beschleunigungswerts

Der Beschleunigungswert wird aus dem Positionswert abgeleitet. Nachfolgend finden Sie ein Berechnungsbeispiel, bei dem die Beschleunigung aus der Position berechnet wird. Das Beispiel zeigt eine Geschwindigkeitsänderung von 6000rpm in einer Sekunde.

6000 = rpm/s (Umdrehungen pro Minute pro Sekunde)


 $100 = r/s^2$ (Umdrehungen pro Sekunde²)

100*2¹⁴= Schritte/s² (Schritte pro Sekunde²)

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6040h

Name	Object	Subindex	Description
Acceleration Value	6040h		
Highest subindex suppor-		00h	
ted			
Acceleration value		01h	Acceleration value [steps/s²]

INFC

Während der Acceleration integration time (6041h-02) ist der mit Acceleration Value (6040h) ermittelte Wert nicht gültig.

6 | Betriebsfunktionen Baumer

6.5 Acceleration parameter

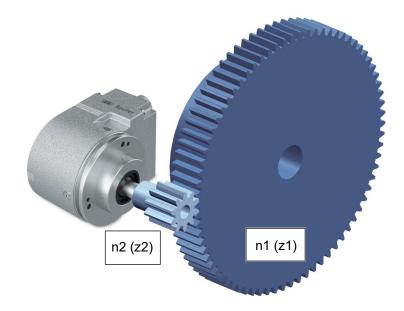
Mit dieser Funktion können die Parameter zur Ermittlung der Beschleunigung angepasst werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6041h

Name	Object	Subindex	Description
Acceleration parameter	6041h		
Highest sub-index sup- ported		00h	
Acceleration source se-		01h	■ 1: 6004h Position value
lector			2: 600Ch Position raw value
Acceleration integration ti-		02h	
me			
Multiplier value		03h	Output value multiplier
Divider value		04h	Output value divider

6.6 Gear Factor


Mit dieser Funktion wird die elektronische Getriebefunktion konfiguriert.

HINWEIS

Diese Funktion wird auch als Zähler/Nenner-Skalierung oder Rundachsenfunktion bezeichnet.

Bei aktivem Getriebefaktor gibt ein mechanisch auf der Primärseite (Antriebsseite) des Getriebes montierter Drehgeber Positionsdaten aus, als ob er auf der Sekundärseite (Abtriebsseite) des Getriebes montiert wäre.

Der Parameter *Gesamtmessbereich* definiert immer die Anzahl der gewünschten Schritte für eine Umdrehung auf der Sekundärseite des Getriebes.

Primärseite (Antriebsseite) Nenner Sekundärseite (Abtriebsseite) Zähler

Gear factor
$$i = \frac{\text{Numerator}}{\text{Denominator}} = \frac{\text{Speed at drive side (n2)}}{\text{Speed at driven side (n1)}} = \frac{\text{Number of teeth at driven side (z1)}}{\text{Number of teeth at drive side (z2)}}$$

Die Werte für Zähler und Nenner des Getriebefaktors ergeben sich direkt aus der Anzahl der Zähne. Im Beispiel oben ist die Anzahl der Zähne auf der Abtriebsseite 75 und auf der Antriebsseite 10.

Der Parameter *Measuring units per revolution* wird in der Getriebefaktor-Funktion nicht eingestellt, sondern ergibt sich aus Gesamtmessbereich, Zähler und Nenner.

Measuring units per revolution = total measuring range * denominator numerator

Beispiel

Der Übersetzungsfaktor soll 75:10 (also 7,5) betragen. Die Auflösung auf der Sekundärseite des Getriebes soll "1 Umdrehung = 10000 Schritte" betragen.

Der Zähler ist 75 und der Nenner ist 10. Es sind nur ganzzahlige Werte für Zähler und Nenner zulässig. Der gesamte Messbereich beträgt 10000.

Der Encoder macht 7,5 Umdrehungen für eine Umdrehung auf der Sekundärseite des Getriebes. Der sich daraus ergebende Wert der *Measuring units per revolution* für den Geber ist 10000 / 7,5 = 1333,3333.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

6 | Betriebsfunktionen Baumer

CANopen Zugriff: 2001h

Name	Object	Subindex	Description
Gear Factor Configuration	2001h	_	Configuration of electronic gear function
Highest subindex supported		00h	
Mode Control		01h	 0: electronic gear function disabled 1: electronic gear function enabled
Numerator		02h	Numerator of the gear factor
Denominator		03h	Denominator of the gear factor

Gültige Kombinationen von Zähler, Nenner und Gesamtmessbereich ergeben sich aus der folgenden Formel.

Measuring units per revolution = total measuring range * $\frac{\text{denominator}}{\text{numerator}}$ = 2^32 * 1/16384 = 262144

Measuring units per revolution = 2³² * 1/16384 = 262144

Der Parameter *Measuring units per revolution* darf die maximal zulässigen Werte des Drehgebers nicht überschreiten.

HINWEIS

Der Parameter *Measuring units per revolution* wird vom Drehgeber selbst berechnet und muss nicht konfiguriert werden.

In diesem Modus konfigurieren Sie bitte nur die folgenden Parameter:

- Gesamtmessbereich 6002h
- Getriebefaktor Zähler 2001h-02h
- Nenner des Getriebefaktors 2001h-03h

Gear factor: numerator 2001h-02h

Dieser Parameter wird nur berücksichtigt, wenn die Getriebefaktor-Funktionalität aktiv ist.

Bei Verwendung eines Untersetzungsgetriebes (n2 < n1) ist der Zähler des Getriebefaktors größer als der Nenner.

HINWEIS

Das Wort Numerator wird gleichbedeutend mit Zähler verwendet.

Gear factor: denominator 2001h-03h

Dieser Parameter wird nur berücksichtigt, wenn die Getriebefaktor-Funktionalität aktiv ist.

Bei Verwendung eines Übersetzungsgetriebes (n2 > n1) ist der Nenner größer als der Zähler.

HINWEIS

Das Wort *Denominator* wird gleichbedeutend mit *Nenner* verwendet.

Gültige Kombinationen von Zähler, Nenner und Gesamtmessbereich ergeben sich aus der folgenden Formel.

Baumer Betriebsfunktionen | 6

Measuring units per revolution = total measuring range * $\frac{\text{denominator}}{\text{numerator}}$ = 2^32 * 1/16384 = 262144

Der Parameter *Measuring units per revolution* darf die maximal zulässigen Werte des Drehgebers nicht überschreiten.

Getriebefaktor - Zähler

Dieser Parameter wird nur berücksichtigt, wenn die Getriebefaktor-Funktionalität aktiv ist.

Bei Verwendung eines Untersetzungsgetriebes (n2 < n1) ist der Zähler des Getriebefaktors größer als der Nenner.

Getriebefaktor - Nenner

Dieser Parameter wird nur berücksichtigt, wenn die Getriebefaktor-Funktionalität aktiv ist.

Bei Verwendung eines Übersetzungsgetriebes (n2 > n1) ist der Nenner größer als der Zähler.

6.7 Number of distinguishable revolutions

Mit dieser Funktion kann die maximale Anzahl der Umdrehungen ausgegeben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6502h

Name	Object	Subindex	Description
Number of distinguishable	6502h	_	max. multiturn revolutions
revolutions			

6.8 Used single turn resolution

Mit dieser Funktion kann die aktuelle Auflösung für eine einzelne Umdrehung ausgegeben werden [Schritte/Umdrehung].

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [§ 63].

CANopen Zugriff: 6501h

Name	Object	Subindex	Description
Used single turn resoluti-	6501h	_	max. Measuring units per revolution
on [step/rev]			

6 | Betriebsfunktionen Baumer

6.9 Operating parameter

Mit dieser Funktion können die Betriebsparameter für den Sensors geändert werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6000h

Name	Object	Subindex	Description
Operating parameter	6000h	_	Bit 0:
			0: Position CW
			1: Position CCW
			Bit 2:
			0: Scaling function disabled
			1: Scaling function enabled

6.10 Total measuring range

Mit dieser Funktion kann der Messbereich beeinflusst werden [Messbereich in Schritten].

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6002h

Name	Object	Subindex	Description
Total measuring range	6002h	_	Total measuring range in Steps.
			Exception: Value 0h means 1'0000'0000h Steps

6.11 Measuring units per revolution

Mit dieser Funktion kann die gewünschte Auflösung für eine einzelne Umdrehung gesetzt werden [Schritte/Umdrehung].

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6001h

Name	Object	Subindex	Description
Measuring units per revo-	6001h	_	Measuring units per revolution.
lution [Step/rev]			

Limitierungen

Abhängig von der Einstellung bei Measuring units per revolution (6001h) und Total measuring range (6002h), sowie der maximal möglichen Umdrehungen des Gebers (2³⁰ = 1'073'741'824) arbeitet der Geber automatisch im Endlosmodus.

Voraussetzung für den Betrieb im Endlosmodus:

Baumer Betriebsfunktionen | 6

$$2^{30} \frac{measuring\ units\ per\ revolution\ (6001h)}{total\ measuring\ range\ (6002h)} \neq 2^x$$

$$x \in \mathbb{N} (1, 2, 3, ...)$$

Bei einem Betrieb im Endlosmodus muss die maximale Geberumdrehung, während der Geber stromlos ist oder die Einschaltdauer kürzer als 5 Minuten ist, kleiner als 2²⁹ (536'870'912) Umdrehungen sein. Wird diese Umdrehungszahl überschritten, muss der Geber nach jedem Einschalten referenziert werden (siehe Preset value, 6003h).

Beispiel 1: Parametereinstellungen, bei denen der Geber ohne Einschränkung arbeitet

Maximum possible revoluti- 1'073'741'824 (30 bit multiturn)

ons:

Measuring units per revolu- 3600

tion:

Total measuring range: 29'491'200

Berechnung: $1'073'741'824 \times 3600 / 29'491'200 = 131'072 = (2^{17})$

Beispiel 2: Parametereinstellungen, bei denen der Geber automatisch im Endlosmodus arbeitet

Maximum possible revoluti- 1'073'741'824 (30 bit multiturn)

ons:

Measuring units per revolu- 3600

tion:

Total measuring range: 100'000

Berechnung: $1'073'741'824 \times 3600 / 100'000 = 38'654'705.664 \neq (2^{x})$

6 | Betriebsfunktionen Baumer

6.12 Offset encoder

Mit dieser Funktion kann der Offset des Sensors ausgelesen werden.

CANopen Zugriff: 6509h

Name	Object	Subindex	Description
Offset encoder	6509h	_	Internal offset calculated during the preset
			process.

6.13 Preset value encoder

Mit dieser Funktion kann der Preset-Wert beeinflusst werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [63].

CANopen Zugriff: 6003h

Name	Object	Subindex	Description
Preset value encoder	6003h	_	Preset value in steps

Baumer

7 Anhang

7.1 CANopen Objektverzeichnis

Die nachstehenden Tabellen zeigen eine Zusammenfassung aller vom Drehgeber unterstützten SDO-Objekte.

Object Objekt-Nummer in Hex

Subindex

Name Objektname

Data typeU/I = Unsigned/Integer , No. = no of bits, ARR = Array, REC = Record, STR = String

Access rights ro = read only, wo = write only, rw = read write, m = mappable

Default Werkseinstellung

Save X = kann im EEPROM gespeichert werden

Description zusätzliche Erläuterung

7.1.1 Kommunikations-Profil

				Access			
Object	Subindex	Name	Data type	rights	Default	Save	Description
1000h		Device type	U32	ro			Singleturn: 30010196h
							Multiturn : 30020196h
1001h		Error Register	U8	ro	0h		■ Bit0: Generic error
							■ Bit2: Voltage error
							■ Bit4: Communication error
							Bit7: Manufacturer-specific error
1003h		Predefined error field	Array				
	00h	Highest subindex supported	U8	rw	0h		Number of stored messages (0 - 8)
	01h	Last entry	U32	ro			Newest Error Code
	08h	Oldest entry	U32	ro			Oldest Error Code
1005h		Sync COB-ID	U32	rw	80h	X	COB-ID of the sync object
1008h		Device name	STR	ro			Singleturn: "EAM580RS_ST"

7 | Anhang

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
,				119110			Multiturn : "EAM580RS MT"
100Ah		Software version	STR	ro			Software version in ASCII
100Ch		Guard time	U16	rw	0h	X	Guard time (actual guard time is Object 100Ch*100Dh [ms])
100D		Life time factor	U8	rw	0h	X	Life time factor
1010h		Store parameters	Array				
10 1011	00h	Highest subindex supported	U8	ro	4h		No. of save possibilities 5
	01h	Save all parameters	U32	rw	1h		="evas" (65766173h) to save
	02h	Communication parameters	U32	rw	1h		="evas" (65766173h) to save
	03h	Application parameters	U32	rw	1h		="evas" (65766173h) to save
	04h	Manuf. specific parameters	U32	rw	1h		="evas" (65766173h) to save
	05h	Manufacturer LSS group	U32	rw	1h		="evas" (65766173h) to save
1011h		Restore default parameters	Array				
	00h	Highest subindex supported	U8	ro	4h		No. of reset possibilities = 5
	01h	All parameters	U32	rw	1h		="daol" (64616F6Ch) to load
	02h	Communication parameters	U32	rw	1h		="daol" (64616F6Ch) to load
	03h	Application parameters	U32	rw	1h		="daol" (64616F6Ch) to load
	04h	Manuf. specific parameters	U32	rw	1h		="daol" (64616F6Ch) to load
	05h	Manufacturer LSS group	U32	rw	1h		="daol" (64616F6Ch) to load
1014h		Emergency COB-ID	U32	rw	80h + Node-ID	X	COB-ID of the emergency object
1017h		Producer heartbeat time	U16	rw	0h	Χ	Producer heartbeat time in ms (0 = disabled)
1018h		Identity object	REC	ro			
1018h	00h	Highest subindex supported	U8	ro	4h		
	01h	Vendor ID	U32	ro	5Fh	_	Vendor ID
	02h	Product code	U32	ro			■ 80h: EAM580RS MT
							■ 81h: EAM580RS ST
	03h	Revision number	U32	ro			Product revision No.

Baumer

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
	04h	Serial number	U32	ro			Serial No.

Object

1029h

1301h

1302h

Subindex

00h

01h

02h

03h

00h

01h

02h 03h

04h

05h

06h

00h

01h

02h

03h

04h

05h

06h

Name	Data type	Access rights	Default	Save	Description	
Error behaviour	Array					
Highest subindex supported	U8	ro	3h			
Communication error	U8	rw	1h	X	0h: Change to pre-operational mode	
Generic error	U8	rw	1h	X	■ 1h: No state change	
Voltage error	U8	rw	1h	X	2h: Change to stopped mode	
SRDO1 communication param.	REC			X		
Highest subindex supported	U8	ro	6h	X		
Information direction	U8	rw	1h	X	■ 00h: not valid	
					• 01h: valid, Tx, SRDO producer	
Refresh-time SCT	U16	rw	25	X	Safety Cycle Time	
Validation Time SRVT	U8	ro	20	X	Safety-related Validation Time	
Transmission type	U8	ro	FEh	X		
COB-ID 1	U32	rw	101h	X	COB-ID for not inverted SRDO frame	
COB-ID 2	U32	rw	102h	X	COB-ID for inverted SRDO frame	
SRDO2 communication param.	REC			X		
Highest subindex supported	U8	ro	6h	X		
Information direction	U8	rw	00h	X	• 00h: not valid	
					• 01h: valid, Tx, SRDO producer	
Refresh-time SCT	U16	rw	25	X	Safety Cycle Time	
Validation Time SRVT	U8	ro	20	X	Safety-related Validation Time	
Transmission type	U8	ro	FEh	X		
COB-ID 1	U32	rw	12Bh	X	COB-ID for not inverted SRDO frame	
COB-ID 2	U32	rw	12Ch	X	COB-ID for inverted SRDO frame	

Baumer

				Access			
Object	Subindex	Name	Data type	rights	Default	Save	Description
1303h		SRDO3 communication param.	REC			X	
	00h	Highest subindex supported	U8	ro	6h	X	
	01h	Information direction	U8	rw	00h	X	• 00h: not valid
							• 01h: valid, Tx, SRDO producer
	02h	Refresh-time SCT	U16	rw	25	X	Safety Cycle Time
	03h	Validation Time SRVT	U8	ro	20	X	Safety-related Validation Time
	04h	Transmission type	U8	ro	FEh	X	
	05h	COB-ID 1	U32	rw	155h	X	COB-ID for not inverted SRDO frame
	06h	COB-ID 2	U32	rw	156h	X	COB-ID for inverted SRDO frame
1381h		SRDO1 mapping parameter	REC				
	00h	Highest subindex supported	U32	ro	8h		
	01h	SR app. data object 1	U32	ro	61200108h		Safety position 1st byte (LSB)
	02h	SR app. data object 1 inverted	U32	ro	61210108h		Safety position inverted 1st byte (LSB)
	03h	SR app. data object 2	U32	ro	61200208h		Safety position 2nd byte
	04h	SR app. data object 2 inverted	U32	ro	61210208h		Safety position inverted 2nd byte
	05h	SR app. data object 3	U32	ro	61200308h		Safety position 3rd byte
	06h	SR app. data object 3 inverted	U32	ro	61210308h		Safety position inverted 3rd byte
	07h	SR app. data object 4	U32	ro	61200408h		Safety position 4th byte (MSB)
	08h	SR app. data object 4 inverted	U32	ro	61210408h		Safety position inverted 4th byte (MSB)
1382h		SRDO2 mapping parameter	REC				
	00h	Highest subindex supported	U32	ro	4h		
	01h	SR app. data object 1	U32	ro	61244108h		Safety speed 1st byte (LSB)
	02h	SR app. data object 1 inverted	U32	ro	61250108h		Safety speed inverted 1st byte (LSB)
	03h	SR app. data object 2	U32	ro	61240208h		Safety speed 2nd byte (MSB)
	04h	SR app. data object 2 inverted	U32	ro	61250208h		Safety speed inverted 2nd byte (MSB)

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
1383h		SRDO3 mapping parameter	REC				
	00h	Highest subindex supported	U32	ro	4h		
	01h	SR app. data object 1	U32	ro	30000108h		Safety acceleration 1st byte (LSB)
	02h	SR app. data object 1 inverted	U32	ro	30010108h		Safety acceleration inverted 1st byte (LSB)
	03h	SR app. data object 2	U32	ro	30000208h		Safety acceleration 2nd byte (MSB)
	04h	SR app. data object 2 inverted	U32	ro	30010208h		Safety acceleration inverted 2nd byte (MSB)
13FEh		Configuration valid	U8	rw	0h	Χ	Must be actuated with the value A5h.
13FFh		Safety configuration signature	Array				
	00h	Highest subindex supported	U8	ro	3h		
	01h	SRDO1 signature (CRC)	U16	rw	0h	Χ	CRC covers objects 1301h-xx
	02h	SRDO2 signature (CRC)	U16	rw	0h	Χ	CRC covers objects 1302h-xx
	03h	SRDO3 signature (CRC)	U16	rw	0h	X	CRC covers objects 1303h-xx
1800h		Transmit PDO1 parameter	REC			Χ	
	00h	Highest subindex supported	U8	ro	5h	X	
	01h	COB-ID	U32	rw	40000180h + Node-ID	X	COB-ID for TPDO 1
	02h	PDO type	U8	rw	FEh	Χ	Transmission type
	05h	Event timer	U16	rw	100	Χ	Cycle time [in ms]
1801h		Transmit PDO2 parameter	REC			X	
	00h	Highest subindex supported	U8	ro	5h	X	
	01h	COB-ID	U32	rw	40000280h + Node-ID	X	COB-ID for TPDO 2
	02h	PDO type	U8	rw	1h	X	Transmission type
	05h	Event timer	U16	rw	100	Χ	Cycle time [in ms]

Baumer

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
1A00h		Transmit PDO1 mapping	Array				
	00h	Highest subindex supported	U8	rw	1	X	Maximum value is 8
	01h	1st mapping parameter	U32	rw	6004'0020h	X	Position encoder
	02h	mapping parameter entry 2	U32	rw	0h	X	
	03h	mapping parameter entry 3	U32	rw	0h	X	
	04h	mapping parameter entry 4	U32	rw	0h	X	
	05h	mapping parameter entry 5	U32	rw	0h	X	
	06h	mapping parameter entry 6	U32	rw	0h	X	
	07h	mapping parameter entry 7	U32	rw	0h	Х	
	08h	mapping parameter entry 8	U32	rw	0h	X	
1A01h		Transmit PDO2 mapping	Array				
	00h	Highest subindex supported	U8	rw	1	Х	Maximum value is 8
	01h	1st mapping parameter	U32	rw	6004'0020h	X	Position encoder
	02h	mapping parameter entry 2	U32	rw	0h	X	
	03h	mapping parameter entry 3	U32	rw	0h	Х	
	04h	mapping parameter entry 4	U32	rw	0h	Х	
	05h	mapping parameter entry 5	U32	rw	0h	X	
	06h	mapping parameter entry 6	U32	rw	0h	X	
	07h	mapping parameter entry 7	U32	rw	0h	X	
	08h	mapping parameter entry 8	U32	rw	0h	X	

7 | Anhang

7.1.2 Herstellerspezifische Objekte

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
2001h		Gear Factor Configuration	ARR				Configuration of gear function
	00h	Highest subindex supported	U8	ro	3	X	
	01h	Mode Control	U8	rw	1	X	0: electronic gear function disabled
							1: electronic gear function enabled
	02h	Numerator	U32	rw	1	X	Numerator of the gear factor
	03h	Denominator	U32	rw	1	X	Denominator of the gear factor
2100h		Baud rate	U8	rw	5	X	0: 10 kBit/s (not supported)
							■ 1: 20 kBit/s (not supported)
							2: 50 kBit/s
							■ 3: 100 kBit/s
							■ 4: 125 kBit/s
							• 5: 250 kBit/s
							■ 6: 500 kBit/s
							■ 7: 800 kBit/s
							8: 1000 kBit/s
							The baud rate is activated after a reset or power-on (if parameter is saved to non volatile memory).
2101h		Node-ID	U8	rw	1	X	Node-ID 1127 possible
							The new Node-ID is activated after a reset or power-on (if parameter is saved to non volatile memory).
2116h		Error Injection	ARR				Simulation of encoder errors for test purposes
	00h	Highest subindex supported	U8	ro	2		
	01h	Warning	U32	rw	0		1: Emergency Warning is simulated
	02h	Alarm	U32	rw	0		1: Emergency Alarm is simulated

Baumer

				Access			
Object	Subindex	Name	Data type	rights	Default	Save	Description
2800h		Baumer Device Information	REC				
	00h	Highest subindex supported	U8	ro	6		
	01h	Serial Number	STR	ro	0		String version of 1018h-04h, resp. 650Bh
	02h	Article Number	U32	ro	0		SAP number of the encoder
	03h	Order Number	U32	ro	0		Baumer order number
	04h	Product key	STR	ro	0		EAM580RS_MT / EAM580RS_ST
	05h	Product name	STR	ro	0		e.g. EAM580RS-SCB.EJCS.14180.J
	06h	Manufacturer date	STR	ro	0		Date in format "DD.MM.YYYY hh:mm:ss"
2A00h		Operation Time	ARR				
	00h	Highest subindex supported	U8	ro	2		
	01h	Current	U32	ro,m	0		Currrent operation time since boot up [s].
	02h	Total	U32	ro,m	0		Total operation time [s].
2A01h		Operation Cycle Counter	U32	ro,m	0		
2A20h		External Supply Voltage	ARR				
	00h	Highest subindex supported	U8	ro	3		
	01h	Current	132	ro,m	0		Current external supply voltage [mV]
	02h	Min	132	ro,m	0		Min. external supply voltage [mV]
	03h	Max	132	ro,m	0		Max. external supply voltage [mV]
2A40h		Temperature	ARR				
	00h	Highest subindex supported	U8	ro	3		
	01h	Current	18	ro,m	0		Current Temperature [°C]
	02h	Min	18	ro,m	0		Min. Temperature [°C]
	03h	Max	18	ro,m	0		Max. Temperature [°C]
2A80h		Battery Voltage	ARR				
	00h	Highest subindex supported	U8	ro	1		
	01h	Current	I16	ro,m	0		Current battery voltage [mV]

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
2A81h		CW / CCW Information	ARR				·
	00h	Highest subindex supported	U8	ro	2		
	01h	CW Counter	U32	ro,m	0		
	02h	CCW Counter	U32	ro,m	0		
3000h		Safety acceleration value	ARR				
	00h	Highest subindex supported	U8	ro	2		
	01h	Safety acceleration 1st byte	18	ro	0		
	02h	Safety acceleration 2nd byte	18	ro	0		
3001h		Safety acceleration inverted value	ARR				
	00h	Highest subindex supported	U8	ro	2		
	01h	Safety acceleration 1st byte	18	ro	0		
	02h	Safety acceleration 2nd byte	18	ro	0		
3100h		Safety acceleration parameter	REC				
	00h	Highest subindex supported	U8	ro	11		
	01h	Code sequence	U16	rw	0	X	
	02h	Preset	U32	rw	0	X	
	04h	Safety speed source selector	U8	rw	1	X	
	05h	Safety speed integration time	U16	rw	100	X	
	06h	Safety speed multiplier value	U16	rw	1	X	
	07h	Safety speed divider value	U16	rw	1	X	
	08h	Safety acceleration source selector	U8	rw	1	X	
	09h	Safety acceleration integration time	U16	rw	100	Х	
	0Ah	Safety acceleration multiplier value	U16	rw	1	X	
	0Bh	Safety acceleration divider value	U16	rw	1	X	

7 | Anhang

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
31FFh		Safety acceleration configuration signature	U16	rw	0	X	CRC value covering objects 3100h-xx

7 | Anhang

7.1.3 Standardisiertes Geräteprofil

Ohiost	Cookin day	Nama	Data tuma	Access	Defect	0	December
Object	Subindex	Name	Data type	rights	Default	Save	Description
6000h		Operating parameter	U16	rw	4h	X	Configuration of encoder operating parameters
							Bit0: Code sequence
							0: Rising values on CW Rotation
							1: Rising values on CCW Rotation
							Bit2: Scaling function control
							0: Scaling disabled
							■ 1: Scaling enabled
							If scaling is disabled the position value (6004h) will be calculated with the default values of the measuring units per revolution (6001h) and total measuring range (6002h) instead of the user settings.
6001h		Measuring units per revolution [Step/rev]	U32	rw	4000h	X	Measuring units per revolution.
6002h		Total measuring range	U32	rw	0h	X	Total measuring range in Steps. Number of distinguishable steps over total measuring range in [steps].
							Allowed range: 2 to 2 ³² -1 steps (value 0h means 2 ³² steps, i.e. 4'294'967'296dec or 1'0000'0000h steps)
6003h		Preset value encoder	U32	rw	0h	X	Preset value in steps
6004h		Position encoder value	U32	ro,m			Position in steps , scaled value
600Ch		Position encoder raw value	U32	ro,m			Position in steps, raw value
6030h		Speed Value	Array	_			
	00h	Highest sub-index supported	U8	ro	1		
	01h	Speed Value	I16	ro,m			Speed value in steps/second

Object	Subindex	Name	Data type	Access rights	Default	Save	Description
6031h		Speed parameter	REC	_			
	00h	Highest sub-index supported	U8	ro	4		
	01h	Speed source selector	U8	rw	1	Х	1: 6004h Position value2: 600Ch Position raw value
	02h	Speed integration time	U16	rw	100	X	in ms
	03h	Multiplier value	U16	rw	1	X	Output value multiplier
	04h	Divider value	U16	rw	1	X	Output value divider

Object	Subindex	Name	Data type	rights	Default	Save	Description
6040h		Acceleration Value	Array				
	00h	Highest subindex supported	U8	ro	1		
	01h	Acceleration value	I16	ro,m			Acceleration value [steps/s²]
6041h		Acceleration parameter	REC				
	00h	Highest sub-index supported	U8	ro	4		
	01h	Acceleration source selector	U8	rw	1	X	■ 1: 6004h Position value
							2: 600Ch Position raw value
	02h	Acceleration integration time	U16	rw	100	X	in ms
	03h	Multiplier value	U16	rw	1	X	Output value multiplier
	04h	Divider value	U16	rw	1	X	Output value divider
6100h		Safety position configuration parameters	REC				
	00h	Highest subindex supported	U8	ro	2		
	01h	Code Sequence	U16	rw	0	X	
	02h	Preset	U32	rw	0	X	
6101h		Safety speed configuration parameters	REC				
	00h	Highest sub-index supported	U8	ro	7		
	01h	Code Sequence	U16	rw	0	X	
	02h	Preset	U32	rw	0	X	
	04h	Safety speed source selector	U8	rw	1	X	
	05h	Safety speed integration time	U16	rw	100	X	
	06h	Multiplier value	U16	rw	1	X	
	07h	Divider value	U16	rw	1	X	

Access

7 | Anhang

				Access			
Object	Subindex	Name	Data type	rights	Default	Save	Description
6120h		Safety position value	Array				
	00h	Highest sub-index supported	U8	ro	4		
	01h	Safety position 1st Byte	U8	ro			
	02h	Safety position 2nd Byte	U8	ro			
	03h	Safety position 3rd Byte	U8	ro			
	04h	Safety position 4th Byte	U8	ro			
6121h		Safety inverted position value	Array				
	00h	Highest sub-index supported	U8	ro	4		
	01h	Safety position 1st Byte	U8	ro			
	02h	Safety position 2nd Byte	U8	ro			
	03h	Safety position 3rd Byte	U8	ro			
	04h	Safety position 4th Byte	U8	ro			
6124h		Safety speed value	Array				
	00h	Highest sub-index supported	U8	ro	2		
	01h	Safety speed 1st Byte	108	ro			
	02h	Safety speed 2nd Byte	108	ro			
6125h		Safety speed inverted value	Array				
	00h	Highest sub-index supported	U8	ro	2		
	01h	Safety speed 1st Byte	U8	ro			
	02h	Safety speed 2nd Byte	U8	ro			
61FEh		Safety application configuration valid	U8	rw	0	Х	is to be set valid (value A5h), after the Safety application configuration is completed

_	
עק על	
=	
3	
D	

7 | Anhang

01: 4				Access	D 6 11		
Object	Subindex	Name	Data type	rights	Default	Save	Description
61FFh		Safety application configuration signature	Array				
	00h	Highest sub-index supported	U8	ro	2		
	01h	Safety position configuration signature	U16	rw		X	CRC covering objects 6100h-xx
	02h	Safety speed configuration signature	U16	rw		Х	CRC covering objects 6101h-xx
6200h		Cycle timer PDO1	U16	rw	100		In milliseconds, internally linked to object 1800h-5
6500h		Operating Status	U16	ro	4h		Bit 0: 0: Position CW 1: Position CCW Bit 2: 0: Scaling function disabled 1: Scaling function enabled
6501h		Used single turn resolution [step/rev]	U32	ro	16777216		
6502h		Number of distinguishable revolutions	U32	ro	1073741824		
6503h		Alarms	U16	ro,m	0h		
6504h		Supported alarms	U16	ro	F003h		
6505h		Warnings	U16	ro,m	0h		
6506h		Supported warnings	U16	ro	7014h		
6507h		Profile & software version	U32	ro	1000401h		
6508h		Operating time	U32	ro			
6509h		Offset encoder	132	ro	0h		

Ohioot	Cubindov	Nama	Dete ture	Access	Default	Caura	Description
Object	Subindex	Name	Data type	rights	Default	Save	Description
650Ah		Module identification	Array				
	00h	Highest sub-index supported	U8	ro	1		
	01h	Manufacturer offset	132	ro	0		
650Bh		Serial number	U32	ro			Internally linked to object 1018h-4h

Abbildungsverzeichnis Baumer

Abbildungsverzeichnis

Abb. 1	Übersicht Funktionsprinzip	S
Abb. 2	CANopen-Modell	10
Abb. 3	Zustände eines CANopen-Teilnehmers	18
Abb. 4	SRDO COB-ID Tabelle	29
Abb. 5	SRDO CAN-Message-Struktur	36
Abb. 6	Werkseinstellungen – SRDO1	37
Abb. 7	Werkseinstellungen – SRDO2	38
Abb. 8	Werkseinstellungen – SRDO3	38
Abb. 9	Schematische Darstellung Fehlerregister	48

